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Abstract 

This study examines the reaction of four major emerging equity markets of the Pacific Rim to the US oil 

market fear index (i.e., the Chicago Board of Trade Volatility Index, OVX). The OVX is designed to 

perform as a leading indicator of the volatility in crude oil markets. Our study examines the daily data for 

the period of 2014 through 2019. We excluded data for the extraordinary and transitory COVID-19 time 

period. We found that, during this period, there were four significant breaks in the data. Impulse 

responses from the structural vector autoregressive (SVAR) estimation show that in the second and third 

subperiods, from December 2016 through December 2018, the volatility of the equity markets of Hong 

Kong, Shanghai, Seoul, and Taiwan responded to structural shocks to the OVX. Nonlinear Granger 

causality tests confirmed these findings. This period is characterized by geopolitical crises, like nuclear 

proliferation on the Korean Peninsula and lingering complications surrounding the Brexit referendum.  

JEL classification numbers: G10, G15, G17 

Keywords: volatility, Pacific Rim Equity Markets, OVX, structural vector autoregression, GARCH 

Models, causality  
 

1  Introduction 

This study examines the responses of four major emerging market equity markets in the Pacific Rim to 

the Chicago Board of Exchange (CBOE) Crude Oil ETF Volatility Index (“Oil VIX” or OVX). The OVX 

functions similar to the VIX. The OVX measures the market’s expectation of the thirty-day implied 

volatility of crude oil prices by applying the VIX methodology to the United States Oil Fund LP (Ticker: 

USO) options covering a wide range of strike prices. VIX is the first implied volatility index by CBOE 

and the precursor of other similar indices in the US and around the world. OVX is normally positively 

correlated with crude oil prices. The higher values of the OVX are usually associated with rising crude oil 

prices. The information content of the OVX may be another tool to predict crude oil prices and the 

subsequent ramifications of its movement for financial markets. For instance, upward movements of 

OVX may be positive for bond markets and currency values in exporting economies and negative for the 

equity prices in most economies. Thus, tracking the movements of the OVX may offer hedge strategies 

for investors as well as corporations. 

The VIX method and, by extension, OVX methodology aggregates Black Scholes implied volatility over 

various strike prices using a particular expiry (thirty days). The volatility smile patterns are aggregated so 

that changes to extreme implied volatility are dampened. The OVX is designed in a similar manner to the 

VIX. Like VIX, the OVX is calculated by interpolating two weighted sums of the option mid-quote 
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values and, in this case, options on the OVX ETF. High readings of the OVX may indicate a downside 

risk for the crude oil price in the next 30 days. The OVX, like VIX, may suffer from some of the same 

problems that other leading indicators do. For instance, practitioners note that there have been periods 

when VIX predictions and market movements have diverged inconsistently based on predictions for VIX, 

such as the four months between August 8, 2017, and November 8, 2017, when VIX was up 19%, 

signaling rising fear among market participants. This would imply a downward trend in the S&P 500. 

It may be informative to investigate the relationship between OVX and future volatility in the equity 

markets of the world. Indeed, there are many studies that have examined similar cross-market 

relationships between VIX and equity markets. 

This study examines the reactions of the equity indices of Hong Kong, Korea, Shanghai, and Taiwan to 

the OVX. The importance of these economies and their equity markets cannot be underestimated. In 

1950, these economies were among the world’s least developed countries.  Today, driven by their free 

market economic policies and vibrant capital markets, Hong Kong, South Korea, and Taiwan are known 

as the Asian tigers. China is the world’s second largest economy.   

The objective is to determine whether investors in these markets are sensitive to movements in crude oil 

prices and, by association, to the OVX. While China is the fourth largest crude oil producer in the world, 

the remaining three indices represent the equity indices of economies that are dependent on imported 

crude oil. If it is found that the OVX performs as a leading indicator of equity market movements, this 

may provide useful information for the valuation of implied volatility-based derivatives, hedging 

strategies based on OVX fluctuations, and option pricing, among other financial strategies. Furthermore, 

practitioners view the OVX and similar fear indices, such as VIX, as a predictor of market movements in 

the near future. This is the main reason why the OVX was created by the CBOE as a leading indicator, 

and findings from the present study may confirm or contradict this notion. 

Our study formally tests for structural breaks in the OVX for the period of the study. We identify four 

distinct subperiods and estimate a structural vector autoregressive model (SVAR) for each one. In each 

subperiod we test the response of equity markets and their volatility to structural shocks to the OVX. 

Detecting nonlinearities in the time series under consideration, we deploy the nonlinear Granger causality 

test (see Skalin and Svirta, 1999) to examine the robustness of our findings in regard to the predictive 

power of the OVX as a leading indicator of market movement. These findings may collectively have 

implications for hedging strategies, particularly if the findings suggest a disparate reaction to the OVX 

movement in these major emerging equity markets.  

The remainder of the paper is organized as follows: Section II offers a brief review of the relevant 

literature, data are explained in Section III, the methodology of the research is the subject of Section IV, 

and Section V consists of the analysis of the empirical findings. The last section is devoted to a summary 

and conclusions. 
 

 

2  Review of the Relevant Literature 
 

Many researchers have investigated the association of volatility in crude oil prices with crude oil 

distillates, equity markets, and exchange rates, among other factors. Kilian and Park (2009) investigated 

the role of oil price shocks in the volatility of US equity markets. Adrangi et al. (2001) analyzed the price 

dynamics of Alaska North Slope crude oil and L.A. diesel fuel prices by estimating vector autoregressive 

(VAR) and bivariate GARCH models to show that there is strong evidence of a unidirectional causal 

relationship between the two prices.  

In another study, Adrangi et al. (2018) examined the monthly movements of US diesel prices for the 

period 1974–2017. The SVAR formulation and the vector error correction models (VECMs) suggest that 

global demand shocks to crude oil, including the inventory of crude oil in the US, are primarily 

responsible for diesel price movements in the US, accounting for up to 30–70% of its variation. 

Adrangi et al. (2015) studied the daily volatility spillovers between crude oil prices and equity indices for 

a group of major equity markets. Bivariate generalized autoregressive conditional heteroscedasticity 
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(VAR-GARCH) estimations indicate bidirectional volatility spillovers. After finding evidence of 

asymmetric market responses to negative and positive shocks, they estimated asymmetric bivariate VAR-

exponential GARCH (VAR-EGARCH) models. Their findings confirmed the shock transmissions to be 

asymmetric, and the positive and negative shocks of the same size on oil prices have an unequal influence 

on the volatility of equities.  

Adrangi et al. (2020) examined the impact of crude oil price fluctuations on equity markets for four 

emerging Latin American markets: Argentina, Brazil, Chile, and Mexico. Their study investigates this 

association in time and frequency domains. The co-spectral analysis confirms that most of the observable 

coherence between crude oil and equity returns occurred at relatively short frequencies. The SVAR 

results suggest that shocks to crude oil prices lead all equity markets into negative territory, though they 

typically reversed course after approximately twenty-four months. The nonlinear Granger causality tests 

reveal that, with the exception of the Merval Index, the equity markets under study were responsive to 

crude oil price shocks. 

Lundberg et al. (2020) found that energy represents an important share of production costs for many 

agricultural commodities. They used a new wavelet-based regression approach to explore horizon-based 

heterogeneity in the relationship between oil and agricultural commodity prices. They present evidence of 

heterogeneity across time horizons and commodities. Lundberg et al. (2020) show that agricultural 

contracts can generate price stickiness that leads to heterogeneity in crude oil cost pass-through over 

different horizons. 

The focus of previous studies has been on crude oil prices and their volatility. Since 2007, OVX has 

emerged as an indicator of volatility in crude oil prices. The information content of the OVX may be a 

reliable tool to predict crude oil prices and the subsequent ramifications of its movements for financial 

markets. Furthermore, because of its leading indicator role, tracking the movements of the OVX, similar 

to those of the VIX, may offer hedging strategies for equity and commodity markets. 

The association of the OVX with equities, particularly equities of emerging economies, has not been 

explored in the literature. Researchers have investigated the role of OVX in other contexts.  For instance, 

Wen et al. (2019) investigated the association of macroeconomic variables in China with the US 

economic policy uncertainty index (EPU), the VIX, and the OVX. Chen et al. (2015) employed Kalman 

filter regressions to study the dynamic relationship between the OVX and future crude oil prices. Lin and 

Tsai (2019) studied the daily data for Brent crude oil prices and the VIX and OVX indices. The closest to 

the present research is Ahmad et al. (2018), who examined VIX, OVX, and other commodities as hedging 

tools to hedge investments in clean energy equities. Our paper fills a gap in the literature by examining a 

potentially critical role that OVX may have in the equity markets of the major Pacific Rim crude oil-

import major economies and their equity markets.   

Studies that investigate the role of VIX in the market abound. For instance, several papers in the last 

decade have researched the association between VIX and other asset classes. Notable among them are 

papers that investigate fixed-income securities, commodities, and foreign currencies, among other asset 

categories (see Giot, 2005; Badshah et al., 2013; Boscaljan and Clark, 2013; Jubinski and Lipton, 2013; 

Sari, 2011; and Adrangi et al., 2019). Studies by Sharma et al. (2019), Ji et al. (2019), Gürsoy (2020), and 

Cheuathonghua (2019), among others, extend this investigation to cross-market associations of VIX and 

the equity markets of Europe, BRICS countries, Latin America, and other emerging markets. 

While many papers have examined VIX and its information content, predictive power, and time series 

properties, research on OVX has been limited. Ahmad et al. (2018) examined VIX, OVX, and other 

commodities as hedging tools to hedge investments in clean energy equities. Their findings—using 

several different approaches—indicated that VIX may be the most reliable hedging asset for clean energy 

equities, followed by oil and OVX.  

Chen et al. (2015) employed Kalman filter regressions to study the dynamic relationship between OVX 

and future crude oil prices. Their empirical findings show a negative association between OVX changes 

and future crude oil price returns except in cases of abnormally high readings of the OVX. Additionally, 

they further confirm that OVX is a fairly good predictor of the future realized volatility in crude oil price 

changes. 
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Lin and Tsai (2019) studied the daily data for Brent crude oil prices and the VIX and OVX indices from 

May 10, 2007, to November 13, 2017. They found six structural breaks in the data during their sample 

time period and the cointegration between the oil price and VIX throughout the sampling period. 

However, the cointegration between OVX and the Brent crude oil price is not consistent across structural 

breaks. According to Lin and Tsai (2019), the cointegration relation coupled with correlation analysis 

indicates that OVX seemed to be better than VIX in predicting oil price changes.  

Wen et al. (2019) investigated the association of macroeconomic variables in China with the US 

economic policy uncertainty index (EPU), VIX, and OVX in a nonlinear cointegrating autoregressive 

distributed lag (NARDL) framework. Their empirical findings indicated that, with the exception of OVX, 

there is evidence of a short-run relationship between the measures of uncertainty shocks and China’s 

macroeconomy. In the long run, VIX seems to be the most relevant in fueling uncertainty in China’s 

macroeconomy. However, OVX and EPU also influence economic uncertainty and trigger responses in 

the inflation rate, output, and money supply, among other indicators. They concluded that policy makers 

and investors would benefit from tracking the uncertainty indicators in their study. 

Qadan et al. (2020) deployed threshold-GARCH, structural vector auto regression, and causality models 

to investigate the association of risk appetite, oil price returns, and volatility. According to one finding, oil 

prices and their volatility in recent years are mainly driven by shocks originating in the economic 

uncertainty and risk appetite of investors in the equity markets and may not depend on structural 

economic shocks to oil supply and demand. Furthermore, investors’ risk tolerance drives changes to 

OVX, which measures perceptions about future oil volatility. Their findings provide a better 

understanding of the relationships among oil markets, VIX, and OVX. Most important, they found that 

variations in the investor’s appetite for risk determined equity price variations as well as OVX and crude 

oil prices. 

Kang et al. (2021) employed time-frequency analysis to examine the association among US sector equity 

ETFs, oil, gold, stock market, and uncertainty factors in the short and long terms. According to Kang et 

al. (2021), VIX has the strongest effect on US sector equity ETFs in both the short and long runs, and this 

is followed by OVX. The US EPU has the smallest influence on sector ETFs, and sector ETFs show a 

stronger association with oil than gold. Co-movements among the sector ETFs, gold, oil, and uncertainty 

factors exhibit temporal asymmetry and are more pronounced in the short run. Financial and economic 

uncertainties also intensify the association among them.  

Geng et al. (2021) applied graph theory to investigate the information flow among US equities, strategic 

commodities (oil and gold), and equities in Brazil, Russia, India, China, and South Africa. However, 

unlike the prior literature, they apply a graph theory approach that incorporates a model to disclose the 

dynamics of information integration and to investigate the impact of political, military, macroeconomic, 

and financial events on the changes in information flow among implied volatility indices. Their findings 

show that the information transmission network is unstable and exhibits temporal dynamics. Their 

dynamic conditional correlation reveals that some events impact the local market only, whereas others 

have a global impact.  

This paper contributes to the literature by examining the role of OVX in four emerging Pacific Rim equity 

markets. Specifically, we examine the reaction of the equity markets in major Pacific Rim economies to 

the fluctuations in OVX. Additionally, we looked for causality between OVX and the equity indices 

under study. If there is evidence that Pacific Rim equity markets are sensitive to OVX, there may be steps 

that the investors, wealth management firms, and economic policy makers can take to minimize risks to 

the economies and financial markets.   
 

 

3   Data 

The daily data for the study is for the period that covers September 18, 2014, through September 27, 

2019. This period is in the pre-COVID-19 era. Although COVID-19 has been the focus of much attention 

since early 2020 because of its disruptive effect on all aspects of the world economy, its effects on all 

industries—and the US economy in particular—is expected to be transitory. The literature shows that the 



Dynamic Responses of Major Pacific Rim Emerging Equity Markets to the…                                        55 

 

impact of economic shocks is often short-lived (see Adrangi et al., 2019). This finding is supported by 

current observations in the US economy. Most industries are well on their way to returning to their pre-

COVID-19 levels. For instance, Bloomberg (2021) reports that high-frequency indicators across most 

measures show that economic growth is returning as the economy reopens from winter lockdowns. 

Moody’s (2020) expects that, with vaccinations on the rise and an ease in government lockdowns, world 

economies will recover from the pandemic by 2023. According to Forbes (2021), the construction 

industry has already bounced back to its pre-pandemic level of activity. 

The daily index values of the Hang Seng Index (HS) for Hong Kong (HK), the Korea Composite Index 

(KO), the Shanghai Stock Exchange Index (SH), the Taiwan Stock Exchange Index (TW), and the OVX 

are taken from the Bloomberg database. These indices represent the main national stock exchanges of the 

markets under study.  

The HS is the main indicator of overall market movements in HK. It is a free-float-adjusted market-

capitalization-weighted stock market index based on fifty companies. These companies represent roughly 

59% of the market capitalization on the Hong Kong Stock Exchange. The HS began on November 24, 

1969, and is currently compiled and maintained by Hang Seng Indexes Company Limited, which is a 

wholly owned subsidiary of Hang Seng Bank, one of the largest market capitalization banks in Hong 

Kong. The Hongkong and Shanghai Banking Corporation (HSBC) is a multinational British investment 

bank and is the majority shareholder of Hang Seng Bank.  

The KO is the index of all common stocks traded on the Stock Market Division of the Korea Exchange. 

The KO was introduced in 1983 with a base value of 100 as of January 4, 1980. It is the representative 

stock market index of South Korea. The KO is calculated based on a market capitalization of over 760 

companies. Samsung, Hyundai Motors, and LG are among the highest market capitalization shares 

included in the index. It is similar to the S&P 500 in terms of its breadth.   

The SH (or SSE Composite Index or SSE Index) is a stock market index of all stocks (A shares and B 

shares) that are traded on the Shanghai Stock Exchange.
[2]

 The SSE Index debuted in July 1991 and is a 

Paasche-weighted composite price index. The index is the ratio of the current market capitalization of all 

A and B stocks divided by the market capitalization on the base day (i.e., December 19, 1990).  

The TAIEX is the Taiwan Stock Exchange Corporation Index. The Taiwan Stock Exchange Corporation 

was created in 1961 and has been a stock exchange since February 1962. There were 809 companies 

originally listed on the exchange. In December 2019, its market capitalization was approximately 37 

million Taiwan dollars. It is regulated by the Taiwan Financial Supervisory Commission. 
 
 

4  Methodology 

Structural Vector Autoregressive Formulation 

The main tool for the empirical investigation in this study is a structural vector autoregression model 

(SVAR). The methodology is well-developed in the literature. Following Adrangi et al. (2019), we offer a 

brief discussion of the methodology. A SVAR may be written as:  

A Xt = B0 +


 
s

i 1

tuXB iti
, (1) 

where A is a n x n square matrix and in our case, 5X5 because we have five endogenous variables,  

https://en.wikipedia.org/wiki/Capitalization-weighted_index
https://en.wikipedia.org/wiki/Hang_Seng_Bank
https://en.wikipedia.org/wiki/Common_stock
https://en.wikipedia.org/wiki/S%26P_500
https://en.wikipedia.org/wiki/Stock_market_index
https://en.wikipedia.org/wiki/A-share_(mainland_China)
https://en.wikipedia.org/wiki/B-share_(mainland_China)
https://en.wikipedia.org/wiki/B-share_(mainland_China)
https://en.wikipedia.org/wiki/SSE_Composite_Index#cite_note-method-2
https://en.wikipedia.org/wiki/Financial_Supervisory_Commission_(Taiwan)
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where matrix A is a five-dimensional square matrix of the structural model coefficients, vector ut 

comprises structural shocks, and Xt = (OVXt, HSt, KOt, SHt, TWt)' is the vector of model variables. As we 

will see shortly, except for OVX, the remaining series in vector x are stationary conditional variances in 

each market, which are derived from a GARCH (1,1) model. These variables represent market volatility.  

The off-diagonal elements of matrix A represent the contemporaneous relationship among the five-by-one 

(5 X1) elements of the vector of the model’s stationary endogenous variables (i.e., OVX and time-varying 

volatility in the five indices). Additionally, B0 is a 5X1 vector of intercepts, and Bi is a 5X5Xs coefficient 

matrix of lagged endogenous variables on the right-hand side of Equation (1). There are 5X5Xs (s is the 

lag order) parameters to be estimated in matrix Bi. The vector of white noise structural innovations 

(shocks) is the 5X1 vector ut with elements that are uncorrelated with the model’s endogenous variables 

and across equations.  

The reduced form of Equation (1) is obtained by multiplying both sides of the equation by the matrix A
-1

 

given by Equation (2),  

Xt = G0 +


 
s

i 1

teXG iti
, (2) 

where G0 = A
-1 

* B0, Gi = A
-1 

* B, and et = A
-1 

* ut. The elements of vector et  (i.e., forecast errors) are a 

linear function of the structural innovations given by vector ut.  

As in most simultaneous systems of equations, initially the reduced-form SVAR is estimated, and the 

structural parameters are subsequently recovered using these estimates. Having estimates of the structural 

model allows us to examine the responses of the model variables to the structural shocks of each variable. 

Equation (3) shows that the structural shocks are a linear combination of the reduced-form forecast errors.  
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(3) 

In Equation (3) the elements of vector et are the forecast errors associated with OVX and the time-varying 

volatility in the HS, KO, SH, and TW equity indices, respectively. 

The identification problem in the SVAR models arises because the number of estimated coefficients 

derived from the reduced form estimation are insufficient to recover the coefficients of the structural 
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model and structural shocks. Therefore, some restrictions on the off-diagonal elements of matrix A in 

Equation (1) are necessary. 

For instance, given the five endogenous variables, we would need to impose ten necessary restrictions 

(i.e., [n
2
-n]/2) on the elements of matrix A, where n = 5. These restrictions are sufficient to render the 

remaining unrestricted elements ai of matrix A in Equation (3) identifiable. 

The SVAR estimations are often used to analyze impulse responses and prediction error innovation 

accounting (i.e., variance decomposition). To obtain the impulse responses and to perform the innovation 

accounting, the estimates of the reduced-form coefficients and the covariance matrix of the forecast errors 

in the reduced form are needed to obtain the structural model coefficients and innovations. Using an 

identification strategy, the structural shocks in Equation (1) (i.e., the elements of vector ut) are fully 

recoverable from the forecast errors in the reduced-form model by Equation (2).  

We impose a long-run restriction assuming that cumulative impulse responses of equity markets to the 

shocks to OVX shocks are negligible (Blanchard, 1989; Blanchard and Quah, 1989). This assumption is 

plausible because, while the shocks to OVX may trigger volatility in equity markets, in the long run the 

economic fundamentals and firm cash flows determine the direction of equities and indices. The reduced-

form forecast errors are a function of structural errors, such as: 

 

tt
Ψe = Fu ,  

where matrix Ψ  is an inverse matrix with long-run multipliers as its elements. From this equation, the 

reduced-form errors and their covariance matrix may be computed as 
1

t



te = Ψ Fu  and 
'

t t eE(e e ) = Σ , 

where 
1 ' 1 eΣ Ψ FFΨ . The long-run identifying restrictions are imposed by setting elements of matrix 

F equal to zero. For instance, Fij = 0 implies that the long-run accumulated impulse response of variable I 

to shocks to the variable j is zero. 

Finally, the Wold representation of the estimated structural model in Equation (1) is written in an infinite 

moving average representation of the structural shocks as follows: 







0j

jtit uΦΩX , (4) 

where  and  are the vector of intercepts and the matrix of infinite structural shocks, respectively. 

As discussed by Adrangi et al. (2019), elements of matrix  in Equation (4) can be used to derive 

variable responses to structural shocks to other model variables. For instance, ij(0) is the instantaneous 

impact of a shock to innovation j on the endogenous variable i and is called the impact multiplier. One-

period impacts of shocks to innovation j on variable i in time period t are given by ij(t). Furthermore, by 

performing innovation accounting, one can examine the forecast error variance or variance 

decomposition. If shocks to a structural innovation explain none of the forecast error variance of the 

endogenous variable xj, then the series xj is unrelated to the remaining endogenous variables of the model. 

Imposing long-run restrictions requires that the variables in the estimated SVAR are stationary. Table 1 

shows that in most subperiods the equity market indices under study are not stationary. Furthermore, the 

objective of the research is to examine the association of volatility in each market with OVX. Therefore, 

prior to estimating SVAR, we derive the time-varying volatility in each index by fitting GARCH (11) 

models to each index return. The mean equation of returns for each index is given by Equation (5) as: 
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εti-ti

p

1=i
t   R  = R  , (5) 

where Rt represents the percentage changes in each series. The lag length for each series is selected based 

on the Akaike (1974) criterion. The residual term (t) represents the index movements that are purged of 

linear relationships and seasonal influences. The conditional variance equation of index returns in the 

GARCH (1,1) model is given by Equation (6) as:  

1,
2

1,
22

,   tiitiiiti u   i = 1 to 4, (6) 

where σ
2

i,t is the conditional variance, u i,t-1 is the lagged innovations, and σ
2
i,t-1 is the lagged conditional 

volatility. The GARCH models are estimated by the maximum likelihood method. 

 

5  Empirical Results 

Before estimating the SVAR and examining the impulse responses, we plot the daily graphs of every time 

series under study.  

A visual inspection of the time series plot of the equity indices shows clear evidence that the indices are 

not stationary. These graphs are not provided for the purpose of brevity. Figure 1  reveals that, while 

OVX may be stationary during certain subsets of the period under study, structural breaks are also visible. 

The focus of the study is on the shocks to OVX and their impact on the equity indices under study. 

Therefore, we use the breaks in OVX to determine the subperiod in which we examine the impulse 

responses. 

Structural breaks in the OVX series might have been related to several geopolitical events during the time 

period of the study. Structural shifts in the crude oil markets, Brexit, and China–US trade and tariff 

disputes are some of the geopolitical events that could be responsible for structural breaks in OVX. We 

briefly discuss these events and their potential impact on the crude oil market. 

The advent of technological improvements, such as hydraulic fracturing as well as the reserves of shale 

oil, have altered the global oil market and placed the US as the number one oil-producing country. These 

events have reduced the market power of OPEC, and the result was a precipitous drop in crude oil prices 

to around $29 per barrel by January 2016. Prices have recovered to some degree as a result of efforts by 

OPEC and the world’s third largest crude oil producer, Russia. 

The election of US President Donald Trump ushered in a new era for international cooperation and trade. 

Even on the campaign trail, candidate Trump criticized many international accords signed by previous 

administrations, including the Trans-Pacific Partnership (TPP), which added to geopolitical uncertainty 

and threatened trade between the US and other members and indirectly among the Pacific Rim 

economies. Ultimately, the US withdrew from the TPP in January 2017. 

The emergence of the US as a major crude oil producer has significantly reduced the power of other crude 

oil suppliers, such as OPEC and Russia, and affects the supply side and controls crude oil prices. 

However, geopolitical uncertainties in the Middle East and the trade dispute between China and the US 

may be factors behind the volatility of crude oil prices. The uncertainty stemming from some of the 

economic and geopolitical events has contributed to firm crude oil prices around $75 per barrel. 

Furthermore, the weakening global economy may have reduced demand for crude oil and caused 

downward pressure on crude oil prices. The upshot of these uncertainties is that OVX has experienced 

several structural break points.  

Brexit and the trade dispute between the two largest economies of the world have threatened world 

economic growth. A slowdown of global economic growth would add to uncertainties on the demand side 

of the crude oil market. Examining the OVX graph shows that OVX is emitting mixed signals during the 
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period of study. The structural breaks in OVX likely reflect the contradictory consequences of the 

underlying supply and demand conditions as well as uncertainties stemming from geopolitical 

developments. 

Table 1 reports the results of a Bai-Perron test of structural breaks in the OVX. The test signals three 

structural breaks that occurred on November 11, 2016; December 28, 2017; and November 30, 2018; 

constituting four subperiods. Thus, we estimate four SVARs, one for each subperiod, and extract the 

impulse responses of the four equity indices to the shocks to the OVX. 

The SVAR model coefficients are based on estimating an unrestricted VAR for the stationary time series. 

Some variables of the SVAR model are nonstationary by the Augmented Dickey Fuller (ADF) and 

Phillips-Perron (PP) unit root tests as well as a KPSS test of stationarity, as shown in Table 1. Lütkepohl 

(2005), among others, suggested transforming SVAR variables to stationary for the SVAR to be 

stationary and stable. Nonstationary variables could result in a nonstationary VAR system and impulse 

responses that are spurious and do not die down with time. 

Stock (1987), West (1988), and Sims et al. (1990) showed that parameter estimates of VAR are consistent 

when variables are nonstationary, but small samples may result in biased estimates. Sims (1989) suggests 

that a Bayesian estimation approach may be more appropriate for modeling and estimating VAR models 

with nonstationary variables. Given the predicted difficulties with the choice of prior distribution for the 

Bayesian estimation, we opted for estimating VARs with stationary variables.  

The stationarity and unit root tests shown in Table 1 confirm our visual observations—that equity indices 

may be nonstationary. The ADF and PP tests for the unit root and the KPSS test of stationarity show that 

most variables in every subperiod are nonstationary. In some subperiods, the indices may be marginally 

stationary. Additionally, the ARCH effects are observed for some indices and in various subperiods. 

To ensure that we obtain appropriate measures of volatility and avoid problems stemming from the non-

stationarity of the index series, we introduce and estimate a GARCH (1,1) model for the stationary 

percentage returns in each equity index in each subperiod. The objective is to extract the time-varying 

heteroscedasticity (i.e., volatility) in each market and subperiod. We specify and estimate the GARCH 

model in Equations (5) and (6). The ADF, PP, and KPSS tests of stationarity show that the estimated 

conditional variances for the entire period of study reported in Table 1, Panel F, are stationary. The 

conditional variance for the SH is marginally stationary. However, once the break points are included, the 

ADF unit root test is statistically significant for this index. The stationarity tests for the subperiods are not 

reported for the purpose of brevity but show that conditional variances in all subperiods are stationary. 

The stationary index volatilities represent each market in the SVAR models. 

To derive the structural shocks from SVARs, unrestricted VARs for each subperiod are estimated with the 

appropriate lag order. Multiple lag order criteria are employed because there may be conflicting signals 

by various criteria. For instance, the Schwarz Bayesian criterion (SBC) tends to underestimate the number 

of lags. Too few lags could result in a nonstationary VAR system and residuals that are not white noise. 

Other lag order criteria, such as the Hannon-Quinn criterion (HQ), the Akaike information criterion 

(AIC), the forecast prediction error (FPE), and the likelihood ratio test (LR), are also examined. 

The VAR lag orders for all subperiods are determined by the FPE, AIC, SC, and HQ. The inverse roots of 

the characteristic polynomial are all inside of the unit circle, confirming that the estimated VAR systems 

are stationary in the subperiods. This ensures that the impulse responses eventually die down. Imposing a 

long-run restriction that matrix A
-1 

is lower triangular, and we are able to derive the structural innovations 

vector u and the impulse responses. The impulse response function is the time path of the volatility in the 

four equity markets following a positive shock to the OVX index. The impulse responses show the size of 

the impact of a shock as well as the rate at which the response tapers off. The point estimates and their 

two-standard-error bands are shown by the solid and dotted lines in all cases.  

Figures 2 through 10 show the impulse responses of the four equity volatilities to the OVX shocks. The 

responses of the volatilities are derived from the moving average representation of the structural model. 

They show that equity index volatilities do not necessarily respond consistently to OVX shocks. Only in 

the second and third subperiods do all four equity indices fall in response to positive shocks in the OVX. 

The impulse responses become statistically insignificant between six and sixteen days. In the interest of 
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brevity, we discuss only the impulse responses in the first, second, and third subperiods presented in 

Figures 2, 4, 6, and 8. 

In subperiod one, the Shanghai and Hong Kong indices react to the OVX as shown by statistically 

significant impulse responses for several days. The Hong Kong equity index drops and takes around four 

days to recover from the shocks to the OVX. This is plausible given that the Hong Kong economy is 

completely dependent on resources imported from abroad, including crude oil. The Shanghai equity index 

benefits from positive shocks to the OVX. China is the fourth ranking crude oil producer in the world. It 

became a crude oil importer in 1993. It is conceivable that positive effects of positive shocks to the OVX 

more than offset the negative consequences of the shocks. This could occur if the crude oil producing 

sector benefits from rising profits and share prices in this sector. The equity indices of Seoul and Taiwan 

do not show a statistically significant response to the OVX shocks. In both cases, the two-standard-

deviation confidence band includes zero, indicating that the impulse responses are not significantly 

different from zero. Therefore, the OVX shocks are considered transitory by investors in these two 

markets. The cumulative responses shown in Figures 3, 5, 7, and 9 in all four markets reflect these 

findings. 

The impulse responses to OVX shocks in the second subperiod by all markets are initially negative and 

statistically significant. While impulse responses in all markets—except for the Shanghai market—

reverse course within eight days, the cumulative responses remain in the negative region, except for the 

Shanghai market. Once again, the findings indicate that the equity markets for the crude oil-dependent 

economies are sensitive to OVX shocks and respond negatively. The economy of China appears to benefit 

from positive shocks to crude oil markets, perhaps because the crude oil-producing sector of the economy 

benefits from the positive shocks to the OVX. If the remaining sectors pass the higher crude oil costs to 

the final product prices, then this finding is plausible. 

The cumulative impulse response confirms that OVX shocks have a cumulative deleterious effect on three 

out of four of the equity markets considered in this study. The exception may be the Shanghai equity 

market, which deviates from this pattern. The volatility in the Shanghai market does not demonstrate a 

plunge on a cumulative basis. This may indicate that China’s oil industry may be acting as a cushion 

against decline in other sectors.  

Only in the third subperiod, which covers January 2018 through November 2018, do all equity markets 

react negatively to OVX shocks. All indices decline, as shown by Figure 7. The two-standard-deviation 

confidence interval indicates that impulse responses become statistically insignificant around five days for 

Korea and Taiwan and roughly thirteen to fourteen days in Hong Kong and Shanghai, respectively. It is 

evident that heightened OVX may lead to investor anxiety in all equity markets under consideration. 

Therefore, we can conclude that rising fear reflected by positive shocks to the OVX results in investor 

anxiety in the four equity indices. The conclusion is that OVX shocks do trigger investor fear and 

downward market volatility in the third subperiod under consideration. Cumulative impulse responses 

bolster the aforementioned observation. The positive shocks to the OVX result in a cumulative declining 

response in all equity markets beyond sixteen days, with the exception of Hong Kong, which takes close 

to a month to respond. 

The third subperiod was dominated by several events that might have directly impacted the Pacific Rim 

markets. The ongoing trade disagreements between the US and China and the resulting tariffs from both 

sides threatened world economic stability and shaved off at least one percentage point from the US GDP 

growth rate. It substantially slowed down the growth rate of the Chinese economy as well. The lack of 

progress in negotiations between the US and North Korea cast a pall on the security of the region for 

many years to come. The weight of these negative news events undoubtedly fueled fear and uncertainty in 

the investing community in the area. Under these conditions of heightened investor nervousness, it is 

plausible that the markets are more susceptible to negative news. Research has shown that the impact of 

news on decision makers may depend on the saliency of issues on peoples’ minds (see Edwards et al., 

1995). It is conceivable that investors in these areas were highly attuned to the information impacting 

their region and responded to risks introduced by crude oil prices and OVX fluctuations. The accumulated 
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impulse responses in the four equity markets to the shocks to the OVX are presented in Figure 8. It is 

evident that there is a considerable accumulated volatility in response to the shocks to the OVX Index.  

The remaining subperiod does not show concrete support for the association between the OVX and the 

equity indices of East Asia.  

Table 2 presents the decomposition of the forecast error of the volatility explained by the SVAR variables 

in the four subperiods in panels A through D. In the first subperiod, the role of the OVX is minimal in 

explaining the forecast error variations in all four equity markets. For instance, in all markets, the factors 

specific to each market and its equities play the most significant role in accounting for the one-day-ahead 

forecast error variations in that market. However, Shanghai equity market fluctuations also carry 

significant weight in explaining the forecast error variations in the remaining markets. Considering that 

China is the second largest economy of the world—it is relatively energy rich and it is possibly second to 

Japan as the most dominant economy in that region—this finding is not surprising, which may indicate 

co-movement among these markets. 

As Panel B of Table 2 shows, in subperiod two, OVX explains 27–76% of the one-day-ahead forecast 

error variations of HS, KO, and TW—all indices that represent economies that heavily depend on crude 

oil imports. However, the Shanghai equity index forecast error variations are not explained by the OVX in 

any notable manner. The forecast error variations in the Shanghai equity market are mainly explained by 

events specific to the economy and equity market of China.  
According to Table 2, Panel C, 45.45% of the one-day-ahead forecast error variations of volatility in the 

HS is because of the shocks to the OVX. The portion of the forecast error in the HS, explained by the 

OVX, remains above 40% for forecast errors of six, twelve, eighteen, and twenty-four days in the HS. 

Similarly, the percentage of the variance of forecast error in the remaining three equity indices are 

consistently above 30%. The weight of the OVX in accounting for forecast error variations in the four 

equity indices may show the sensitivity of these equities in response to the CBOE OVX. In summary, the 

volatility in major emerging equity markets of Asia shows significant response to the OVX. In twenty-

four days, the variations in HS, KO, SH, and TW—because of the OVX—range from 30–42%. One 

concludes that, in this subperiod, the Asian emerging equity markets are sensitive to the US crude oil fear 

index. 

Subperiod three covered almost the entire 2018 calendar year. During this subperiod, many significant 

events might have contributed to economic uncertainty. This is the year that the Trump administration, 

following some tariff chatter during 2017, imposed unprecedented punitive tariffs on steel, aluminum, and 

solar panels from all sources as well as 250 billion dollars of imports from China. The tariffs triggered 

retaliatory counter tariffs on US exports, widening the trade deficit and igniting a global trade war. 

Additionally, it triggered a slowdown of economic growth in China. Furthermore, hope for an orderly 

Brexit was dashed, further fueling market uncertainty. The denuclearization negotiations between the US 

and North Korea also stalled. The confluence of these events, in addition to other minor geopolitical 

uncertainties, undoubtedly spilled into the crude oil market. It is plausible that the equity markets under 

study responded to these uncertainties through the OVX as the catalyst. 

In the fourth subperiod, the role of the OVX is minimal in explaining the forecast error variations in all 

four equity markets. For instance, in all markets, factors specific to each market and its equities play the 

most significant role in accounting for the forecast error in that market. The significant events of the third 

subperiod continue to keep markets around the globe in a state of uncertainty. However, the Hong Kong 

equity market fluctuations also carry a significant weight in explaining the forecast error variations in 

other areas. It is plausible that the position of Hong Kong as a financial center among the four economies 

is playing a role in this subperiod. During this period, Hong Kong financial markets may reflect financial 

uncertainties. Geopolitical uncertainties may have led to financial uncertainties in world financial centers 

like Hong Kong. The co-movements of other equity markets in the study with the Hong Kong equity 

index may be a symptom of financial uncertainties.  

The impulse responses of the SVAR in at least two subperiods suggest that equity market volatility on the 

downside rises in response to OVX shocks. Table 1 shows that the equity market indices under study and 

the OVX are nonstationary in most subperiods. Furthermore, the Johansen-Juselius test of cointegration 
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reveals that the five series are in long-run equilibrium with one cointegrating vector. To explore the 

relationship between the indices in the study and the OVX, we further examined the impulse responses 

from a VECM. The VECM impulse responses for the entire period of study are presented in Figure 10, 

which shows that all equity indices decline in response to OVX shocks for the first two days before 

recovering. These results offer some support for the findings of the SVAR model. To further substantiate 

our findings, we completed the statistical investigation with Granger causality tests. 

 

Nonlinear Causality Test Results 

We have established that the shocks to the OVX trigger volatility in all equity markets in the second and 

third subperiods. The responses to the OVX in all markets vary across subperiods and may be influenced 

by the current events of a specific subperiod. Therefore, it may be informative to examine whether the 

relationship dynamics may be confirmed by testing for causality. However, a complex nonlinearity in the 

series may also be present when ARCH effects are found.  Therefore, following Adrangi et al. (2015), we 

applied a nonlinear extension to the standard Granger causality tests (Granger, 1969; Geweke, 1984), 

which is based on smooth transition regression (STR). The nonlinear impact of x on y is characterized by 

an additive smooth transition component. The following additive smooth transition regression model is 

specified: 

' '
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(7) 

where δj = (δj1… δjq)', j = 1, 2, ν t = (xt-1….xt-q)', and G(.) is a transition function. Noncausality is 

tested as H0: G0 and δ1i = 0, qi .....1 . The approximation to the aforementioned equation is:  
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where K' = (k1…..kq), and noncausality is supported by ki = 0, φij = 0 and ψi = 0 i = 1…q, and j = 1…q. 

Under H0 the resulting test statistic has an asymptotic χ
2
 distribution with (q*(q+1)/2) + 2q degrees of 

freedom. 

Table 3 presents the results of the nonlinear Granger causality tests for q = 5….10 for four subperiods in 

panels A through D. We report the P values for the F statistics that test the joint null hypotheses of no 

causality (i.e., that ki = 0, φij = 0, and ψi = 0). Therefore, for some lag levels of variable x, the null may not 

be rejected. Skalin and Svirta (1999) vary the lag order to detect the possible causality between variables 

at varying lags.  

For the four exchanges and all lag levels—in the second and third subperiods—several P-values for F 

statistics are less than 10%, showing that the null hypothesis of no causality can only be rejected at 5% 

and 10%. Overall, the findings from the nonlinear causality tests support the impulse response and 

variance decomposition analyses in two subperiods, 2 and 3 only. It may be argued that, for these 

subperiods, the equity investors in the four economies were more attuned to the geopolitical and 

economic events—but not during other subperiods. The second and third subperiods were dominated by 

the ongoing trade disagreements between the US and China. The tariffs imposed by both sides on traded 

goods in both directions threatened world economic stability and shaved off at least one percentage point 

from the US GDP growth rate while also slowing down economic growth in China and the rest of the 

world. The lack of progress in negotiations between the US and North Korea probably weighed heavily 

on Pacific Rim equity markets. One note of caution is that causality may be considered a higher bar than 
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impulse responses to OVX shocks. Therefore, while impulse responses may be significant, causality may 

fail to show up. 

 

6  Summary and Conclusions 

The objective of this study was to explore the reaction of four major emerging equity markets of the 

Pacific Rim to the US oil fear index, OVX. The economies of South Korea, Taiwan, and Hong Kong 

depend heavily on crude oil imports. While China is the fourth largest crude oil producer in the world, it 

also depends on imports of this vital energy source. This investigation is timely because the OVX has not 

attracted the same attention as the US equity market fear index or VIX. The findings of the study should 

shed some light on the equity market volatility in these economies and offer strategies to international 

fund managers and central banks in these countries.  

It is well known that crude oil prices are prone to volatility stemming from global uncertainties and 

geopolitical events. While practitioners and academicians have been interested in the role of the VIX as a 

leading indicator of the volatility in equity markets, the OVX has been the subject of fewer inquiries.  

Our study examines the daily data for the period of 2014 through 2019. COVID-19 data are not included 

because the shock from COVID-19 is expected to be transitory. We find three significant breaks in the 

OVX series during this period based on the Bai and Perron (2003) test. The breaks in data occur during 

significant economic and political upheavals, such as Brexit, the US exit from the TPP, the North Korean 

missile crisis, and the US–China trade dispute and tariffs. 

We propose and estimate a SVAR formulation in each subperiod that includes the OVX and volatility in 

the equity indices under consideration. The time-varying volatility in equity indices are derived from a 

GARCH (1,1) model of indices for HK HS, China (Shanghai Equity Index), South Korea (Seoul Equity 

Index), and Taiwan (Taiwan Stock Exchange Index). 

The impulse responses from the SVAR estimation show that in the second and third subperiods, from 

December 2016 through November 2018, volatility in the four markets reacted negatively to positive 

structural shocks to the OVX. Nonlinear Granger causality tests support these findings. This time period 

is characterized by significant geopolitical crises: nuclear proliferation on the Korean Peninsula, US 

unilateral withdrawal from the TPP, US–China trade disputes and tariff threats, and lingering 

complications surrounding the Brexit referendum. It is plausible that global uncertainties might have 

heightened sensitivity of the market participants to OVX movements. Granger causality tests lend support 

to these findings. However, in the remaining two subperiods (i.e., January 2014 to November 2016 and 

December 2018 to September 2019) we did not find a consistent volatility reaction to OVX shocks. For 

instance, in subperiod four, the equity markets show a cumulative positive and statistically significant 

response to shocks to the OVX. This could occur as markets are caught in momentum moves and ignore 

fundamentals because investor psychology may dismiss these concerns. 

Our results support the observations of practitioners regarding the OVX as a leading indicator in the crude 

oil market. Similar to many other leading indicators, while the OVX may perform as a reliable leading 

indicator of crude oil market volatility during some periods, this connection may be unstable. Findings 

from the variance decomposition analysis corroborate impulse responses in the subperiods. For instance, 

in subperiods two and three, OVX variations appear to explain a significant portion of the one-period-

ahead forecast errors in all equity indices, perhaps with the exception of the Shanghai equity index. 

Market reaction to OVX shocks may depend on the saliency of issues dominating the sentiments of 

market participants. For instance, in the post-US–China trade tiff, market participants might have 

expected negative chatter, and markets may have capitalized this negative information. Under these 

conditions, shocks to OVX played a less significant role in the minds of the participants.  

Policy makers and fund managers may consider OVX as one indicator of future equity market 

fluctuations. Based on the findings of this paper, at high readings of OVX, particularly during the periods 

of heightened geopolitical upheaval, the oil-importing Pacific Rim economies are vulnerable to crude oil 

market uncertainties. The governments and policy makers in these economies would be well-advised to 

collaborate and create strategic oil reserves similar to that in the US and other countries. Financial 
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managers, energy dependent firms, and investors in the equities of the Pacific Rim countries may engage 

in the derivatives markets to hedge their long and short positions in these markets based on the OVX 

signals.  For instance, given that the Pacific Rim economies, with the exception of Hong Kong, are 

heavily reliant on the export of manufactured goods, purchase of crude oil futures contracts would be 

prudent.  To compensate for possible financial exposure upon delivery of the underlying crude oil due to 

unpredictable price fluctuations, put options would be advisable. While particular strategies may be 

beyond the scope of this paper, the most important contribution of the findings of this paper is that 

upward OVX signals—during periods of significant geopolitical events—should be considered a 

harbinger of near-term equity market losses.   
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Figure 1: OVX and major breaks. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



68                                                                                                  Bahram Adrangi  and Arjun Chatrath 
 

 

Subperiod 1 

 

-3,000

-2,000

-1,000

0

1,000

2,000

2 4 6 8 10 12 14 16 18 20 22 24

Response of Hang Sang volatility to OVX Innovations

-5

0

5

10

2 4 6 8 10 12 14 16 18 20 22 24

Response of Korea Composite Index volatility to OVX Innovations

-200

0

200

400

2 4 6 8 10 12 14 16 18 20 22 24

Response of Shanghai Index volatility to OVX Innovations

-200

-100

0

100

200

300

2 4 6 8 10 12 14 16 18 20 22 24

Response of Taiwan Stock Index volatility to OVX Innovations

Response to Structural VAR Innovations and Two Standard Deviations Confidence Band

 

Figure 2:   Responses of volatility in Equity Indices to Structural Innovations in OVX.   Estimates and Two-

Standard Deviation Confidence Band are in solid and dotted lines.   SVAR lag order is 5. Long-run identification 

restrictions are imposed.  9/18/2014-11/30/2016 
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Figure 3:   Accumulated responses of volatility in Equity Indices to Structural Innovations in VIX.   Estimates and 

Two-Standard Deviation Confidence Band are in solid and dotted lines.   SVAR lag order is 5. Long-run 

identification restrictions are imposed.  9/18/2014-11/30/2016. 
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Figure 4:   Responses of volatility in Equity Indices to Structural Innovations in VIX.   Estimates and Two-Standard 

Deviation Confidence Band are in solid and dotted lines.  SVAR lag order is one. 12/1/2016-12/28/2017. 
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Figure 5:   Responses of volatility in Equity Indices to Structural Innovations in VIX.   Estimates and Two-Standard 

Deviation Confidence Band are in solid and dotted lines.  SVAR lag order is one. 12/1/2016-12/28/2017. 
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Sub-period 3 
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Figure 6:   Responses of volatility in Equity Indices to Structural Innovations in VIX.   Estimates and Two-Standard 

Deviation Confidence Band are in solid and dotted lines.  SVAR lag order is 4. 1/2/2018- 11/30/2018. 
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Figure 7:   Responses of volatility in Equity Indices to Structural Innovations in OVX.   Estimates and Two-

Standard Deviation Confidence Band are in solid and dotted lines.  SVAR lag order is 4. 1/2/2018- 11/30/2018. 

 

  



74                                                                                                  Bahram Adrangi  and Arjun Chatrath 
 

Sub-period 4 

 

1,000

2,000

3,000

4,000

2 4 6 8 10 12 14 16 18 20 22 24

Response of Hang Sang volatility to OVX Innovations

0

4

8

12

2 4 6 8 10 12 14 16 18 20 22 24

Response of Korea Composite Index volatility to OVX Innovations

-120

-80

-40

0

2 4 6 8 10 12 14 16 18 20 22 24

Response of Shanghai Index volatility to OVX Innovations

0

100

200

300

400

500

2 4 6 8 10 12 14 16 18 20 22 24

Response of Taiwan Stock Index volatility to OVX Innovations

Response to Structural VAR Innovations and Two Standard Deviations Confidence Band

 

Figure 8:   Responses of volatility in Equity Indices to Structural Innovations in OVX.   Estimates and Two-

Standard Deviation Confidence Band are in solid and dotted lines.  SVAR lag order is one. 12/3/2018- 9/27/2019. 
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Figure 9:  Accumulated responses of volatility in Equity Indices to Structural Innovations in OVX.   Estimates and 

Two-Standard Deviation Confidence Band are in solid and dotted lines.   SVAR lag order is one. Long-run 

identification restrictions are imposed.  6/24/2013-8/12/2015. 
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Figure 10:   Responses of Equity Indices to Innovations in VIX from Vector Error Correction Model.  VECM lag 

order is one. 9/18/201427/12/2019. 
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Table 1: Break Points for OVX, Diagnostics and Summary 9/18/2014-9/29/2019 

Panel A: Bai-Perron Test of Structural Breaks 

Break  Test Scaled F-Statistic Critical Value
*  

Dates 

0 vs. 1
*
 17.692 11.47  9/18/2014-11/30/2016 

1 vs. 2
*
 52.759    12/1/2016-12/28/2017 

2 vs. 3
*
 12.357   1/2/2018-11/30/2018 

3 vs. 4    12/3/2018-9/27/2019 

ADF Unit Root Test with Structural Breaks 

Based on the Dickey-Fuller t-statistic, break in trend     -5.041
b
 

Based on the Dickey-Fuller t-statistic, break in intercept and trend     -5.703
b
 

 

* Bai-Perron (Econometric Journal, 2003) critical values. 
b
 significant at 10% level, Vogelsang(1997) asymptotic test 

 

 

Panel B: Levels 9/18/2014-11/30/2016 

  

 HS   KO SH TW      OVX   

     

ADF -1.509 -3.049
 b
 -1.915

 
 -1.793 -3.361

b
  

PP -1.517 -3.047
 b
 -2.024 -1.849 -3.231

b
  

KPSS 1.163 0.167
 a
 0.451

b
 0.685

 
 0.167

 a
 

ARCH-LM  8.560
 a
 8.604

 a
 22.921

a
 19.502

 a
    

Panel C: Levels 12/1/2016-12/28/2017     

 HS   KO SH TW      OVX  

ADF 0.054 -1.506 -1.423 -1.469
 

-4.352
 a 

PP 0.033 -1.506 -1.330 -1.486 -4.327
 a
  

KPSS 1.129 1.803 1.180 1.868 1.033  

ARCH-LM  0.619 2.8*10
-6
 0.126 0.004 

Panel D: Levels 12/29/2017-11/30/2018     

 HS   KO SH TW      OVX  

ADF -1.229 -0.885 -1.070
 

 -1.614
 

0.339
 

PP -1.271 -0.931 -1.075  -1.615 -1.332 

KPSS 1.605 1.523 1.687  0.850 0.735  
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ARCH-LM  0.279 18.722
a 

13.577
a
 28.609

a
 

Panel E: Levels 12/3/2018-9/27/2019     

 HS   KO SH TW      OVX  

ADF -1.163 -1.419 -1.512
 

 -1.179
 

-2.569
c 

PP -1.278 -1.724 -1.592  -1.240 -2.562
c
 

KPSS 0.336 0.644 0.598  1.098 0.295
 a
  

ARCH-LM  0.358 0.804 0.002 0.014 

Panel F: GARCH conditional variance (volatility) 9/18/2014-9/27/2019     

 HS   KO SH TW       

ADF -3.314
 a
 -9.292

 a
 -2.359

 
-11.259

 a  

PP -3.672
 a
 -8.169

 a
 -2.632

 c
  -8.716

 a
  

KPSS 0.357
 a
 0.513

 a
 1.175  0.183

 a
  

Panel G:  Summary descriptive statistics for model variables.   All variables are in level.   

 HS   KO SH TW      OVX  

Mean 25523.90 2140.669 3131.459 9732.736  36.503 

Stand Dev 3196.250 188.166 447.553 915.846 10.375   

Skewness 0.035 0.714 1.504 -0.225 0.829  

Kurtosis 2.150 2.221 7.094  1.902 3.034   

J-B 33.313
a 

121.389
a
 1183.191

a
 64.539

a 
126.196 

Panel G:  Johansen-Juselius Cointegration Test, unrestricted VAR lag order =6 

r = The number of cointegrating vectors among the four variables    

 λm  P-Value λt P-Value  

r=0 31.702
 b 

 0.088 63.534  0.143 

r1  15.309 0.723 31.832 0.621 

Notes:  Order of lags in the VAR for cointegration test is 2, determined by the AIC, SBC, FPE, and likelihood ratio 

test. KPSS tests include an intercept in the test regression.  The null hypothesis in that the series is trend-stationary.   

Significance indicates nonstationary except for KPSS test.  Conditional variance for Shanghai exchange is on the 

border line of being nonstationary. However, the unit root test accounting for break points show an ADF statistic of -

5.410, which is statistically significant.   Cointegration with unrestricted intercepts and no trends in the cointegrating 

VARs.  P-values from MacKinnon-Haug-Michelis (1999) for both λm and λt reject no or one cointegrating vector.  

Maximum eigenvalue test suggests possibly 1 cointegrating vectors at 5% level.    
a
, 

b
, and 

c
 , represent significance at .01, .05, and .10, respectively. 
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Table 2:   Percentage of Equity Index Volatility Forecast Error Variations Explained by 

OVX and Major Asian Equity Indices. 

 

Panel A:  First Sub-Period: 9/18/2014-11/30/2016 

       
        HS        

 Period S.E. OVX HS KO SH TW 

       
       1 2.321 3.432 15.595 0.036 80.687 0.251 

 6 4.755 3.383 26.067 1.318 68.947 0.285 

 12 6.005 1.865 43.22 3.13 51.572 0.213 

 18 6.746 1.555 53.515 3.364 41.253 0.314 

 24 7.227 1.433 59.909 2.998 35.33 0.33 

       
       KO        

 Period S.E. OVX HS KO SH TW 

       
        1 8401.285 1.749 0.146 49.492 30.446 18.167 

 6 20967.89 2.335 2.953 60.898 22.226 11.589 

 12 28675.48 2.68 5.118 63.853 18.761 9.588 

 18 32837.14 2.89 6.377 63.208 17.56 9.965 

 24 35513.49 2.921 7.227 61.974 17.945 9.933 

       
        SH        

 Period S.E. OVX HS KO SH TW 

       
        1 41.828 1.536 91.59 5.125 0.564 1.185 

 6 77.617 4.722 87.959 5.53 0.281 1.508 

 12 91.572 5.099 88.565 3.344 2.125 0.868 

 18 95.139 4.476 87.968 2.337 4.597 0.622 

 24 96.275 3.819 86.969 2.044 6.667 0.501 

       

       

TW        

 Period S.E. OVX HS KO SH TW 

       

       

 1 1030.475 0.14 0.325 41.835 29.466 28.234 

 6 2806.649 0.151 1.158 58.378 22.331 17.982 

 12 4167.594 0.417 3.14 57.729 20.299 18.416 

 18 5017.715 0.506 4.803 56.377 20.15 18.163 

 24 5597.687 0.515 6.033 55.291 20.342 17.818 

       

               

 

Panel B: Second Sub-Period: 12/1/2016-12/28/2017 
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 Period HK S.E. OVX HS KO SH TW 

       
 1 1.274 45.599 37.901 0.72 15.028 0.752  1 2.324 59.872 29.798 0.287 9.8 0.242 

 6 2.715 69.047 23.928 0.177 6.691 0.158 

 12 2.951 73.588 20.777 0.143 5.359 0.132 

 18 3.105 75.924 19.028 0.129 4.801 0.118 

 24 1.274 45.599 37.901 0.72 15.028 0.752 

       
         KO       

 Period S.E. OVX HS KO SH TW 

       
       
 1 3153.196 18.17 19.56 62.24 0.021 0.009 

 6 7051.293 20.2 15.764 64.013 0.011 0.012 

 12 9021.317 20.877 14.85 64.25 0.011 0.012 

 18 10094.61 21.029 14.75 64.197 0.011 0.014 

 24 10738.14 21.077 14.735 64.163 0.011 0.014 

       
       SH       

 Period S.E. OVX HS KO SH TW 

       
        1 37.706 7.201 1.037 5.208 86.461 0.093 

 6 61.101 8.752 1.395 3.402 86.399 0.052 

 12 63.424 9.751 1.632 2.721 85.856 0.04 

 18 63.64 10.261 1.718 2.522 85.459 0.039 

 24 63.673 10.527 1.74 2.461 85.233 0.04 

       
         TW       

 Period S.E. OVX HS KO SH TW 

       
        1 64.082 24.46 30.805 1.72 3.208 39.807 

 6 127.73 27.044 24.234 1.456 2.307 44.959 

 12 147.37 26.965 23.604 1.41 2.442 45.578 

 18 153.272 26.836 23.761 1.412 2.596 45.396 

 24 155.167 26.863 23.794 1.411 2.638 45.295 

 

Panel C: Third Sub-Period: 1/2/2018-11/30/2018 

 

       
         HS       

 Period S.E. OVX HS KO SH TW 

       
        1 14770.37 45.454 44.753 0.225 1.116 8.452 

 6 34144.76 50.624 38.736 2.852 3.503 4.284 

 12 45584.47 47.924 43.697 2.954 2.984 2.441 

 18 50491.83 45.084 47.617 2.732 2.473 2.095 

 24 52762.49 42.353 50.714 2.534 2.449 1.951 

       
 KO       

 Period S.E. OVX HS KO SH TW 

       
        1 106.513 14.022 4.275 69.141 0.155 12.407 

 6 244.046 31.667 11.973 52.561 0.635 3.165 
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 12 257.483 31.037 14.797 50.48 0.656 3.029 

 18 259.705 30.576 15.927 49.708 0.737 3.053 

 24 261.172 30.477 16.463 49.215 0.821 3.024 

       
        SH       

 Period S.E. OVX HS KO SH TW 

       
        1 198.829 10.477 13.992 10.018 36.421 29.092 

 6 507.697 27.367 18.28 10.747 34.778 8.828 

 12 668.65 31.815 20.995 14.371 27.307 5.512 

 18 701.461 32.261 21.48 15.371 25.194 5.694 

 24 703.968 32.163 21.578 15.345 25.097 5.816 

       
        TW       

 Period S.E. OVX HS KO SH TW 

       
        1 4634.815 21.451 34.42 31.134 9.879 3.116 

 6 9799.971 31.63 23.686 36.453 4.141 4.091 

 12 10038.44 30.733 23.95 35.93 4.086 5.301 

 18 10094.71 30.968 23.697 35.648 4.327 5.359 

 24 10142.39 31.32 23.479 35.504 4.384 5.313 

       
       Panel D: Fourth Sub-Period: 12/3/2018-9/27/2019 

 

 

 

      
       HS       

 Period S.E. OVX HS KO SH TW 

       
        1 6916.501 16.999 82.006 0.057 0.031 0.906 

 6 14105.56 27.665 71.736 0.08 0.238 0.281 

 12 17020.5 38.131 60.894 0.162 0.597 0.217 

 18 18529 44.737 54.148 0.187 0.741 0.186 

 24 19443.85 48.756 50.156 0.18 0.738 0.169 

       
       KO       

 Period S.E. OVX HS KO SH TW 

       
        1 46.398 1.409 27.556 59.283 9.089 2.662 

 6 69.444 3.101 24.019 63.699 7.69 1.491 

 12 71.795 4.097 22.85 63.983 7.541 1.53 

 18 72.378 4.251 22.968 63.422 7.851 1.507 

 24 72.505 4.254 23.005 63.257 7.98 1.503 

       
        SH       

 Period S.E. OVX HS KO SH TW 

       
        1 242.749 8.656 12.092 9.024 70.143 0.085 

 6 518.868 11.476 8.953 10.135 69.407 0.028 

 12 639.694 15.316 6.97 10.353 67.342 0.019 

 18 699.936 19.051 5.929 10.162 64.841 0.016 

 24 735.78 22.322 5.369 9.867 62.427 0.015 
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TW       

 Period S.E. OVX HS KO SH TW 

       
        1 1744.357 1.499 58.111 1.016 5.148 34.226 

 6 2568.054 8.826 51.535 6.172 3.588 29.88 

 12 2749.665 14.265 45.401 7.965 5.987 26.382 

 18 2820.199 16.489 43.183 8.076 7.172 25.08 

 24 2849.413 17.548 42.352 8.012 7.519 24.569 

       
Notes:  Factorization: Structural 
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Table 3: Nonlinear Granger Causality Test:  P-Values of F statistics for the Ho of no nonlinear Granger 

Causality 

Panel A:  First Sub-Period: 9/18/2014-11/30/2016 

   

      Causing Variable   Caused Variables 

Lags  OVX HK KO  SH TW 

5 0.564 0.364 0.273 0.554  

6 0.260 0.538 0.453 0.413  

7 0.487 0.685 0.692 0.397  

8 0.635 0.636 0.697 0.285  

9 0.819 0.309 0.802 0.235  

10 0.689 0.252 0.602 0.404 

Panel B: Second Sub-Period: 12/1/2016-12/28/2017 

      

   HK KO  SH TW 

5 0.677 0.608 0.047 0.692  

6 0.726 0.636 0.017 0.567  

7 0.948 0.694 0.068 0.519  

8 0.920 0.623 0.034 0.533  

9 0.758 0.321 0.019 0.444  

10 0.839 0.509 0.063 0.746 

Panel C: Third Sub-Period: 1/2/2018-11/30/2018  

  

   HK KO  SH TW 

5 0.075 0.008 0.264 0.088  

6 0.103 0.020 0.209 0.076  

7 0.071 0.002 0.344 0.069  

8 0.036 0.008 0.154 0.126  

9 0.011 0.006 0.166 0.014  

10 0.007 0.036 0.072 0.097  
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Panel D: Fourth Sub-Period: 12/3/2018-9/27/2019 

    

   HK KO  SH TW 

5 0.909 0.532 0.105 0.454  

6 0.918 0.703 0.318 0.680  

7 0.729 0.520 0.632 0.219  

8 0.472 0.284 0.393 0.269  

9 0.280 0.239 0.275 0.087  

10 0.341 0.204 0.464 0.126 

Notes:  The reported P-values are for the F statistic for of the test for joint null hypotheses of no causality, i.e. that 

ki=0, φij=0 and ψi=0.  Therefore, at some lag levels of variable x the null may not be rejected.  For instance, the 

computed P-values for the OVX causing SH for 12/1/2016-12/28/2017 interval show that the former causes the 

latter for all lags.  The degrees of freedom in the numerator and the denominator of the F- test of causality are q*(q + 

1)/2+2q and T - n - q*(q + 1)/2-2q, respectively, where q is the number of lags, n is the dimension of the gradient 

vector and T is the number of observations.  Degrees of freedom in the numerator of the F statistics are 25, 32, 42, 

52, 63, and 75 for q=5 through 10 respectively.   

 

 


