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Abstract 

Building on a proper selection of macroeconomic variables for constructing a Gross Domestic Product 

(GDP) forecasting multivariate model (Kazanas, 2017), this paper evaluates whether alternative Bayesian 

model specifications can provide greater forecasting accuracy compared to a standard Vector Error 

Correction model (VECM). To that end, two Bayesian Vector Autoregression models (BVARs) are 

estimated, a BVAR using Litterman’s prior (1979) and a BVAR with time-varying parameters (TVP-VAR). 

The BVAR is found to have statistically significant forecasting gains against the benchmark and the TVP-

VAR. Furthermore, the BVAR requires only minimal modifications to account for the effect of pandemic 

observations on its coefficients, only for longer-term forecasts.  
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1.  Introduction  
   Macro-econometrics according to Stock and Watson (2001), serves a quadruple purpose: Data 

description, forecasting, structural inference, and policy analysis. To that end, several types of models, from 

single-equation to large models with hundreds of equations have been used, like Klein’s LINK model in 

1980 (Klein, 1976) and more recently, Dynamic Stochastic General Equilibrium (DSGE) models 

(Christiano et al., 2018). 

Lucas and other new classical economists were especially critical of the use of large-scale macro-

econometric models to evaluate policy impacts when they were purportedly sensitive to policy changes 

(Lucas, 1976). Given that the optimal decision rules vary systematically with changes in the structure of 

series relevant to the decision maker, it follows that any policy change will systematically alter the structure 

of econometric models.  

Sims (1980) framework of Vector Autoregressive models (VARs) came as an answer to this critique.    

VARs are n-equation, n-variable linear models in which each variable is in turn explained by its own lagged 

values, plus past values of the remaining n - 1 variables. This simple framework provides a systematic way 

to capture rich dynamics in multiple time series, while at the same time, the statistical toolkit that came 

with VARs is easy to use and interpret. As Sims (1980) and others argued in a series of early influential 

papers, VARs held out the promise of providing a coherent and credible approach to data description, 

forecasting, structural inference, and policy analysis. 

An alternative to standard OLS VARs is the Bayesian VARS (BVARs), initially proposed by Sims (1980) 

and Doan, Sims, and Litterman (1984), who through Bayesian shrinkage sought to further improve the 

forecasting performance of the multivariate econometric models available at the time. The BVARs’ 

superiority in forecasting is well established as the literature is rich in Bayesian multivariate models that 

outperform either standard frequentist or DSGE models, for example, see Gupta and Kabundi (2010).  

To estimate a BVAR, the formulation of priors is necessary, with the most popular one being the so-called 

Minnesota prior (Litterman, 1979). However, since its introduction several more advanced priors have been 

proposed, such as the one by Sims and Zha (1998). Furthermore, advances in Bayesian statistics and 

computational capabilities have enabled the use of more complex BVARs, such as the Time-Varying 

Parameter VARs (TVP-VARs) with the most prominent work on such models being that of Cogley and 

Sargent (2002;2005), Primiceri (2005), and more recently Carriero et al. (2015). 

This advantage of inputting a researcher’s belief or knowledge as a BVAR prior has an extra argument in 

favor of Bayesian specifications, when it comes to specifically forecasting Greek macroeconomic variables. 

This is because as the time series usually used in estimating Greek macroeconomic models’ coefficients 

start at the year 2000, a significant portion of the sample is comprised of observations that occurred during 

the economic crisis. This may lead to obtaining coefficients that do not accurately reflect the data generating 

process of the economy over the long run, and hence it makes sense to limit the parameter space that OLS 

would have to “search” for coefficient estimation by imposing priors consistent with general 

macroeconomic stylized facts. Despite that, the application of BVARs in forecasting Greek macroeconomic 

activity is rather limited, with the most prominent work being that of Louzis about macroeconomic and 

credit variables forecasting using BVARs (2017) and Greek GDP nowcasting (2018). 

Against this background and given the limited application of Bayesian methods to Greek economic data, 

the aim of this paper is twofold: Firstly to test whether Bayesian multivariate models provide any gains 

when it comes to forecasting Greek GDP and secondly to examine if the models examined require any 

modifications to continue provide meaningful forecasts, once observations from the COVID-19 period are 

included in them. To do so, we sought out to use a set of macroeconomic variables, suitable for use in a 

multivariate model to generate GDP forecasts, as specified in Kazanas (2017), to estimate alternative 

specifications of BVARs and examine the accuracy gains in GDP forecasting using as a benchmark the 

standard frequentist Vector Error Correction Model (VECM) estimated in Kazanas (2017). To do so, we 

opted to use two alternative models: A BVAR estimated using the Minnesota prior under the notion of 

limiting the parameter space to obtain a more parsimonious model as explained earlier, and a TVP-VAR to 

allow the coefficients to change throughout the sample, thus generating forecasts based on the most recent 
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state of the business cycle. The forecasting exercise comprises of a one-quarter ahead, a two-quarter ahead 

and a four- quarter ahead pseudo out-of-sample forecasts, evaluated over three periods: Pre-COVID-19, 

during COVID and Post-COVID-19. 

The remainder of the paper is organized as follows: In section 2 the data used in estimating the three models 

(the benchmark VECM, the BVAR, and the TVP-VAR) are presented, in section 3 we concisely present 

the models and their estimation techniques, while in section 4 we present the forecasting exercise results 

and lastly in section 5 we discuss the conclusions and policy implications. 

 

2. The data 
   The variable selection for the Greek GDP forecasting follows Kazanas (2017), where a VECM is 

constructed including data for real GDP (Y), unemployment rate (U), GDP deflator (P), 10-year government 

bond yield (GB), and exports as a percentage of GDP (XY). The data sample ranges from 2000:Q1 to 

2023:Q2. All data are adjusted for seasonality and sourced from Eurostat’s national accounts (Eurostat 

database code: na10), labor market survey (Eurostat database code: labour), and interest rates (Eurostat 

database code: irt) databases.  

Descriptive statistics of the selected variables are presented in Table 1, while in Figure 1 one can see the 

evolution of the series over time. It is evident that the variables were performing well up to 2009 when the 

trend shifted due to the Greek economic crisis, the impact of which is reflected in the sharp decrease of 

GDP, the increase of unemployment and the bond yield volatility approximately between 2009 and 2015. 

Furthermore, GDP, unemployment rate, and exports display increased volatility around the second quarter 

of 2020, which reflects the impact of the pandemic and the corresponding lockdown. Lastly, the GDP 

deflator records a sharp increase towards the end of the sample (2021Q3 onwards) reflecting the post-

pandemic inflation wave.  

 

Table 1: Descriptive Statistics 

 GDP (Y) Unemployment (U) GDP deflator (P) Bond Yield (GB) Exports (XY) 

Unit Euros Percentage 2015=100 Percentage Percentage 

Mean 5.03E+10 0.156223 95.41323 0.063812 0.286479 

Median 4.82E+10 0.127500 99.38350 0.049650 0.263000 

Maximum 6.34E+10 0.281000 113.1220 0.254000 0.515000 

Minimum 3.89E+10 0.076000 74.49300 0.007000 0.183000 

Std. Dev. 6.64E+09 0.064680 9.627995 0.047900 0.085396 

Skewness 0.605995 0.562050 -0.714195 2.157979 0.781572 

Kurtosis 2.003059 1.855076 2.446428 8.247366 2.680626 
Source: Author’s calculations 
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Figure 1: Sample Variables (2000Q1- 2023Q2) 
Source: Eurostat   

 

For each variable, the ADF unit root test (Dickey and Fuller, 1981) was conducted, as stationarity is a 

prerequisite, especially in estimating a standard VECM or a VAR model. All variables have a unit root in 

levels but are stationary if they are transformed. For Y, P and GB3 the transformation consists of log 

differing the variables, whereas for U and XY the transformation consists of simple differencing 

(Henceforth, lowercase letters denote the transformed variables).  

 

Table 2: ADF test p-values 

 Y U P GB XY 

Levels 0.5357 0.1718 0.9976 0.1124 0.1308 

Transformed 0.0000 0.0273 0.0000 0.0000 0.0000 

 

 

 

 

3 As GB is a percentage simple differencing should be a better approach. However, this leads to models estimated 

having non-white noise residuals. Thus log-differencing is preferred.   
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3. Models presentation and estimation 
   The three models mentioned earlier are estimated using the abovementioned variables. The models are 

estimated over sixteen years (2000:Q1 to 2015:Q4), whereas the remaining sample (2016:Q1 to 2023:Q2) 

is to be used for evaluating their forecasting performance. The VECM and the BVAR model are estimated 

using EViews 10, while the TVP-VAR is estimated using the BEAR Toolbox 4.2 (Dieppe et al. 2016). 

3.1  The VEC benchmark model 

   Based on the works of Granger (1981) and Engle and Granger (1987), Vector error correction models are 

essentially restricted VARs, which contain a set of variables both in differences and in levels. The 

differences of the variables included in the model represent the short-run interrelations of the variables, 

whereas the linear combination of the levels of the variables, commonly referred to as the cointegrating 

vector (or vectors, as more than one linear combination of a set of variables can be included), represents 

the long-run dynamics of the variables. Mathematically, a representative VEC model can be written as 

follows: 

𝛥𝑦𝑡 = 𝑚 +  ∑ 𝐵𝑖𝛥𝑦𝑡−𝑖 + 𝐴𝑦𝑡−1 + 𝜀𝑡
𝑝−1
𝑖=1     (1) 

𝜀𝑡~𝑁(0, 𝛴) 

Where y is the vector containing the variables (in our case y’= [ y u p gb xy ]), 𝑚 is the vector containing 

the constants of the equations system, 𝐵𝑖 is the matrix that contains the coefficients that describe the short-

run impact of the variables’ lag 𝑖 , p is the lag length, 𝐴 is the cointegrating vector that includes the 

coefficients that capture the long-run relationship between the variables, with 𝜀𝑡 being the vector of 

spherical disturbances and 𝛴 being their variance-covariance matrix. The model can also be expanded to 

include exogenous variables. VECMs are very useful in modeling non-stationary time-series without having 

to exclude their long-run behavior, but, like their unrestricted counterparts (VARs), they suffer from the 

“curse of dimensionality”, as the addition of a variable significantly increases the number of coefficients to 

be estimated. 

The estimation of this model follows the Johansen procedure (Johansen, 1995). A VAR is estimated in 

levels (including a constant and a trend) and by incorporating lag length criteria, namely the sequential 

modified LR test statistic, the Final prediction error, the Akaike information criterion, the Scwartz 

information criterion, and the Hanna-Quinn information criterion it is found that two lags are optimal. The 

existence of a cointegrating relation between the variables must be confirmed in order to use a VECM 

specification rather than a simple VAR in differences. The max eigenvalue cointegration test is therefore 

used, which indicates the existence of two cointegrating vectors at the 5% level4. Hence a VECM is 

estimated, with 1 lag per variable and 2 cointegrating vectors. 

 

 

 

 

 

 

 

 

 

4In Kazanas (2017) the existence of the second cointegrating vector is rejected as the hypothesis of at most 1 

cointegrating vector is marginally accepted with a P-value of 0.0505, but since then a major benchmark revision of 

the Greek macroeconomic data has occurred causing the maximum eigenvalue cointegration test to indicate the 

existence of a second cointegrating vector. 
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Table 3: Maximum Eigenvalue Cointegration Test 

Hypothesized Number of 

Cointegrating equations 
Eigenvalue 

Max-Eigenvalue 

statistic 

5% Critical 

value 
P-value 

None * 0.567460 51.96106 38.33101 0.0008 

At most 1 * 0.450144 37.08209 32.11832 0.0114 

At most 2 0.296067 21.76650 25.82321 0.1571 

At most 3 0.255644 18.30464 19.38704 0.0713 

At most 4 0.123745 8.190059 12.51798 0.2366 

* Denotes rejection of the hypothesis at the 0.05 level 

**MacKinnon-Haug-Michelis (1999) p-values 

Upon estimation the model’s residuals are tested and found to be homoscedastic, non-autocorrelated and 

normally distributed. 

 

3.2  The BVAR model 

   Under the Bayesian approach to econometrics, the estimated coefficients of a model are not an attempt to 

estimate their true value, but instead, they are perceived as a summary of the posterior distribution, which 

in its turn is proportional to the likelihood function times the prior distribution. Priors represent any 

knowledge the researcher has beforehand about the coefficients. Following this technique results in the 

coefficients being essentially a matrix-weighted average between the imposed priors and a regular OLS 

estimation (Ouliaris et al, 2016), which leads the variables to behave as if they were random walks (Del 

Negro and Schorfheide, 2010). Mathematically, a representative BVAR model can be written as follows: 

 

                                    𝛥𝑦𝑡 = 𝑚 + 𝐵1𝛥𝑦𝑡−1 + 𝐵2𝛥𝑦𝑡−2+. . . +𝐵𝑝𝛥𝑦𝑡−𝑝 + 𝜀𝑡                                  (2) 

𝜀𝑡~𝑁(0, 𝛴) 
 

Where (as in the previous model) y is the vector containing the variables (in our case y’= [ y u p gb xy]), 𝑚 

is the vector containing the constants of the equations system, 𝐵𝑖 (for i=1, 2,…, p) are the matrices that 

contains the coefficients of lag i and 𝜀𝑡 is the vector containing the error terms, with Σ being their variance-

covariance matrix. 

 

In a BVAR, model parameters are obtained by: 

 

                               𝑏̂ = [𝑉−1 + 𝛴𝑒
−1 ⊗ (𝛸′𝛸)]−1[𝑉−1𝑏̅ + (𝛴𝑒

−1 ⊗ 𝑋′)𝑌]                                 (3) 

where 𝑏̂  is the matrix of the estimated VAR coefficients, 𝑉 is the variance matrix of the prior distribution 

of the model’s coefficients, 𝛴𝑒
  is the variance-covariance matrix of the model’s residuals and 𝑏̅ is a vector 

containing the prior means of each variable’s own first lag coefficients. Y contains the model endogenous 

variables, whereas X includes variable lags plus any exogenous variables that a researcher might want to 

include in the model. 

The error variance-covariance matrix 𝛴𝑒 necessary for the coefficient estimation is either estimated by 

fitting an AR(1) model on every variable and getting the error variances, by estimating an AR(1) and a 

VAR to obtain the diagonal elements of the variance-covariance matrix, or by estimating all variances-

covariances as implied by a full VAR (an option not commonly used, as it can lead to a singular matrix). 

Under the Minnesota prior, the researcher is required to specify a set of hyperparameters in order to 

formulate the priors to obtain the model’s coefficients: μ1, λ1, λ2, and λ3. 
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μ1 is used as the prior mean of the coefficients in the matrix 𝑏̅ and it usually takes the value of 0 (if the 

variables of the model are stationary) or 1 (if the variables of the model have a unit root). λ1, λ2 and λ3 are 

used to formulate diagonal elements of the V matrix (with non-diagonal elements being set to 0). More 

specifically, each diagonal element of the V matrix for the j-th variable in the i-th equation at lag k is 

formulated as follows: 

                                                          (
𝜆1

𝑘𝜆3
)

2

 for 𝑖 = 𝑗,                                                                            (4) 

                                                                 (
𝜆1𝜆2𝜎𝑖

𝑘𝜆3𝜎𝑗
)

2

for 𝑖 ≠ 𝑗                                                                          (5) 

where 𝜎𝑖, 𝜎𝑗 are the square roots of the corresponding elements of the 𝛴𝑒 matrix. 

 

This way λ1 determines how binding the restrictions are. The closer to zero the value of λ1 is, the more 

binding the restrictions are in the estimation of the coefficients. A value over 10 implies an uninformative 

prior. λ2 determines the cross-variable effects in the equations and is set between 0 and 1. The closer the 

value is to 1 the more lags of variable j impact variable i (for j≠i) in the BVAR. Finally, λ3 determines the 

decay rate of the own lags of a variable, excluding the first lag. As this hyper-parameter approaches zero, 

higher order lags decay at a slower rate. 

To proceed with the estimation, we fit an AR(1) model throught each variable for variance estimation. Prior 

hyperparameters are chosen through optimization technique that selects the model with the highest marginal 

likelihood, similar to Giannone et al. (2012). This process yields as optimal hyper parameters μ1=0.3, λ1=0.2, 

λ2=0.4 and λ3=1. 

 

3.3   The TVP-VAR 

   The time-varying parameter VAR is a model that allows model coefficients to change over time. This is 

particularly useful in capturing nonlinear relationships in the data as any model with time-varying 

parameters can successfully represent any nonlinear functional form (Swamy, 1975 and Granger, 2008). 

Macroeconomic variables are known to impact differently each other across the business cycle or after 

structural changes, hence the TVP-VAR is an interesting approach to econometric modeling. The functional 

form of a TVP-VAR is expressed as: 

 

𝛥𝑦𝑡 = 𝑚𝑡 + 𝐵1,𝑡𝛥𝑦𝑡−1 + 𝐵2,𝑡𝛥𝑦𝑡−2+. . . +𝐵𝑝,𝑡𝛥𝑦𝑡−𝑝 + 𝜀𝑡                            (6) 

Where 𝜀𝑡~𝑁(0, 𝛴𝑡) 
 

With 𝑦𝑡 being the matrix containing the variables mt being the vector of time-varying constant parameters, 

𝐵𝑖,𝑡 being the matrix containing the time-varying coefficients for i=1,2…, p. Finally, 𝜀𝑡 is the vector 

containing the error terms, with Σt being their (time-varying) variance-covariance matrix. Elements 𝛽𝑖,𝑡 of 

the 𝐵𝑖,𝑡 matrices are assumed to follow a random walk process:  

 

𝛽𝑖,𝑡 = 𝛽𝑖,𝑡−1 + 𝑣𝑖,𝑡                                                                   (7) 

Where 𝑣𝑖,𝑡~ 𝑁(0, 𝛺𝑖) are normally distributed shocks with Ω being their variance -covariance matrix. 

 

Apart from time-varying parameters of the conditional mean, TVP-VARs include stochastic volatility 

(hence the 𝛴𝑡). This approach makes the model heavily parametrized but is necessary to avoid bias in the 

coefficients across potential volatility clusters, falsely attributing variance shocks to coefficient variation 

(Sims, 2002). The formulation of the 𝛴𝑡 matrix is based on Cogley and Sargent (2005) in the BEAR toolbox. 
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Under this approach the 𝛴𝑡  matrix has 𝑓𝑛,𝑚 non-diagonal elements which are time invariant and are assumed 

to follow a multivariate normal distribution.  

The diagonal elements of the 𝛴𝑡 matrix are of the form 𝑠̅𝑖𝑒𝜆𝑖,𝑡, with 𝑠̅𝑖 being a time invariant scaling factor. 

On the other hand, 𝜆𝑖,𝑡 follows an AR(1) process: 

 

𝜆𝑖,𝑡 = 𝛾𝜆𝑖,𝑡−1 + 𝑢𝑖,𝑡                                                                   (8) 

Where 𝑢𝑖,𝑡~ 𝑁 (0, 𝜑𝑖) 

With 𝛾 being a persistence factor to be determined by the researcher. Furthermore, the prior of 𝜑𝑖 is 

assumed to follow an Inverse Gamma distribution: 

 

𝜑𝑖~𝐼𝐺(
𝑎0

2
,
𝛿0

2
) 

With 𝛼0, 𝛿0 being scaling factors that also need to be determined by the researcher. As the posterior for the 

𝑓(𝐵𝑖,𝑡 , 𝛺𝑖, 𝑓−1, 𝜆𝑖,𝑡 , 𝜑𝑖|𝑦𝑡) cannot be analytically solved, once the abovementioned hyperparameters have 

been chosen, the Gibbs sampler must be used to obtain results. For more detailed presentations of TVP-

VARs, one can look up Primiceri (2005), Chan and Jeliazkov (2009), Lubik and Matthes (2015), or Dieppe 

et al. (2018). 

The above equations imply that there is no mechanism in the model to produce future values of the 

coefficients of the model, as in the absence of new shocks, coefficients remain the same. It is an interesting 

approach, however, to attempt a forecast based on the most recent interrelations between the variables and 

neglect coefficient values of the past, that may not adequately represent the dynamics of the system 

anymore. 

In our estimation of the model, we follow Primiceri (2005) in choosing the number of lags, which is set to 

2. We also set  𝛼0 = 𝛿0 = 0.001 implying a rather uninformative prior. Furthermore, we set 𝛾= 0.95, 

implying strong persistence of variance shocks thus limiting the possibility of explosive behavior in the 

model’s coefficients5 (strong persistence of shocks is also a valid macroeconomic assumption). We set the 

Gibbs sampler to perform 15000 iterations, along with 10000 are burn-in iterations, with a selection of 1 

draw over 10. This specification, while time consuming makes sure that the MCMC has converged (Dieppe 

et al. 2018), thus providing a safe estimation. 

 

4. Forecasting Evaluation  
   To evaluate the forecasting performance of the models three sets of recursive pseudo out of sample 

forecasts are carried out: a one-quarter ahead forecast, a two-quarter ahead forecast and a four-quarter ahead 

forecast. As mentioned earlier, the models are estimated up to 2015:Q4 and the forecast evaluation sample 

expands from 2016:Q1 to 2023:Q2. Due to the fact that in the forecast evaluation sample there are periods 

of increased volatility, because of the COVID-19 pandemic effect, loss function results are reported across 

three sub-periods, so as to compare the forecast performance clearer, given that during the pandemic the 

forecasting performance of all models is expected to deteriorate. The three sub-periods are: The pre-

COVID-19 period (2016:Q1-2019:Q4), the COVID-19 period (2020:Q1-2021:Q2) and the post-COVID-

19 period (2021:Q3 to 2023:Q2). The allocation of quarters into the COVID-19 period was made based on 

the enforcing of the first and the lifting of the last general lockdown restrictions, which is thought to be the 

 

5To further check for such behavior in the model’s coefficients, upon estimation we performed stationarity test. All 

coefficients are found to be stationary within a 10% level of significance (most in levels and a few in first differences).  
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main distorting factor of economic activity. In the two and four-quarter ahead forecasting exercises, a 

forecast is allocated into the COVID-19 period if it includes at least one quarter of said period.   

The forecasts are evaluated using the Mean Absolute Percentage Error (MAPE), the Mean Absolute Error 

(MAE), and the Root Mean Squared Error (RMSE) and the results are reported in table 3: 

 

𝑀𝐴𝑃𝐸 = ( 
1

𝑛
∑

|𝑌𝑡−𝑌𝑡̂|

𝑌𝑡
) ∗ 100𝑛

𝑡=1 = (
1

𝑛
∑

|𝑒𝑡|

𝑌𝑡
) ∗ 100𝑛

𝑡=1                                    (9) 

𝑀𝐴𝐸 =  
1

𝑛
∑ |𝑌𝑡 − 𝑌𝑡̂|𝑛

𝑡=1 =
1

𝑛
∑ |𝑒𝑡|𝑛

𝑡=1                                             (10) 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑ (𝑌𝑡 − 𝑌𝑡̂)2𝑛

𝑡=1 = √
1

𝑛
∑ 𝑒𝑡

2𝑛
𝑡=1                                       (11) 

Where 𝑌𝑡̂ is the forecasted value from the model, 𝑌𝑡 being the actual value and n being the number for 

steps ahead forecasted (1,2 and 4 in our case). 

 

As evidenced in tables 4 through 6, the BVAR outperforms both the benchmark and the TVP-VAR across 

subperiods, forecast horizons and loss functions6. 

 

Table 4: Forecast Evaluation based on MAPE 

  Pre-COVID-19 COVID-19 Post-COVID-19 Total 

1Q Ahead 

VECM 0.81 8.41 1.47 2.51 

BVAR 0.69 6.07 0.96 1.84 

TVP-VAR 0.83 7.70 1.53 2.39 

2Q Ahead 

VECM 0.95 11.52 2.24 3.45 

BVAR 0.86 8.17 1.31 2.48 

TVP-VAR 1.03 10.20 2.11 3.19 

4Q Ahead 

VECM 1.89 15.80 4.06 5.38 

BVAR 1.63 9.74 2.36 3.57 

TVP-VAR 2.11 12.13 3.56 4.61 
Source: Author’s calculations. Bold values indicate best performing model. 

 

More specifically, the BVAR performs well in the pre-Covid-19 period in with a MAPE of 0.69 for the one 

quarter ahead forecast, 0.86 for the two quarter ahead forecast and 1.63 for four quarter ahead forecast (vs 

0.81, 0.95 and 1.89 for the benchmark VECM and 0.83, 1.03 and 2.11 for the TVP-VAR respectively). 

 

 

 

 

6 Results are found to be generally robust to BVAR specification both in terms of lag length and hyperparameters. 

Lag changes lead only to marginal changes in forecasting performance of the order of ±0.2% in terms of MAPE 

(excluding pandemic observations) across subperiods and forecasting horizons. Hyperparameter changes also lead to 

only marginal changes in forecasting performance, with no alternative specification consistently outperforming the 

initial one. 
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Table 5: Forecast Evaluation based on MAE 

  Pre-COVID-19 COVID-19 Post-COVID-19 Total 

1Q Ahead 

VECM 3.15E+08 3.41E+09 6.71E+08 1.03E+09 

BVAR 3.09E+08 2.52E+09 4.44E+08 7.88E+08 

TVP-VAR 3.72E+08 3.19E+09 7.26E+08 1.03E+09 

2Q Ahead 

VECM 4.34E+08 4.57E+09 1.02E+09 1.43E+09 

BVAR 3.90E+08 3.38E+09 6.07E+08 1.06E+09 

TVP-VAR 4.63E+08 4.29E+09 1.01E+09 1.39E+09 

4Q Ahead 

VECM 8.83E+08 5.78E+09 1.83E+09 2.15E+09 

BVAR 7.48E+08 3.92E+09 1.09E+09 1.52E+09 

TVP-VAR 9.04E+08 5.30E+09 1.71E+09 2.03E+09 
Source: Author’s calculations. Bold values indicate best performing model. 

 

Table 6: Forecast Evaluation based on RMSE 

  Pre-COVID-19 COVID-19 Post-COVID-19 Total 

1Q Ahead 

VECM 3.15E+08 3.41E+09 6.71E+08 1.03E+09 

BVAR 3.09E+08 2.52E+09 4.44E+08 7.88E+08 

TVP-VAR 371978647 3.19E+09 7.26E+08 1.03E+09 

2Q Ahead 

VECM 4.72E+08 4.87E+09 1.09E+09 1.53E+09 

BVAR 4.20E+08 3.65E+09 6.50E+08 1.14E+09 

TVP-VAR 4.92E+08 4.6E+09 1.06E+09 1.48E+09 

4Q Ahead 

VECM 1.09E+09 6.24E+09 1.95E+09 2.39E+09 

BVAR 9.34E+08 4.26E+09 1.19E+09 1.72E+09 

TVP-VAR 1.10E+09 5.78E+09 1.91E+09 2.29E+09 
Source: Author’s calculations. Bold values indicate best performing model. 

 

As expected, forecasting performance deteriorates for the BVAR as it does for all models during the 

COVID-19 period (mean absolute percentage errors of 6.1 for the one quarter ahead, 8.2 for the two-quarter 

ahead and 9.7 for the four quarter ahead forecast), but it still performs better than the other competing 

models. Forecast errors are lower in the post COVID-19 period but remain elevated compared to the pre-

COVID-19 period (mean absolute percentage error of 0.96 for the one quarter ahead forecast, 1.31 for the 

two-quarter ahead forecast and 2.36 for the four quarter ahead forecast). In Figure 2, the one step ahead 

forecasts for the competing models are presented. 
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Figure 2: 1 step ahead forecast evaluation graphical representation 
Source: Author’s calculations 

 

Given that we have more than two competing models, we employ the Model Confidence Set test (Hansen 
et al., 2011) to identify the subset of “true” models, that are accepted as statistically superior in terms of 
forecasting. Indeed, the BVAR is accepted as the only model to belong in the model confidence set for all 
three forecasting exercises and for any reasonable level of significance. The test rejects that the rest models 
belong in the set, for any level of significance. 
 

Focusing on the post-COVID-19 period performance and on the fact that variable observations that 
occurred during the pandemic may have “distorted” the models’ coefficients due to the exogenous effects 
of the time, we performed a second run of the forecasting exercise, after we modified the models to reduce 
the effect of the pandemic observations on the model estimations. Each model was modified in the 
following ways: 
1. In the VECM we included a dummy variable in the short run dynamics of the model that takes the value 

of 1 during the pandemic period and 0 otherwise. 
2. In the TVP-VAR we reduce the autoregressive prior γ to 0.75 to allow exogenous shocks to fade away 

faster. 
3. When it comes to BVARs literature is relatively richer in regard with treatment of pandemic 

observations. More specifically, Lenza and Primiceri (2022) weigh pandemic observations, whereas 
Schorfheide and Song (2021) drop those observations altogether (even though they ultimately advise 
against this practice). Other methods include either allowing for fatter error distribution tails as for 
example in Bobeica and Hartwig (2022) or including stochastic volatility in the models as in Carriero 
et al. (2022). Given that these alternatives were developed with the pandemic ongoing and that we do 
not expect a pandemic recurrence we opted for simpler approaches. One includes simply recalibrating 
the BVAR’s priors similar to what Sznajderska and Haug (2023) did in evaluating BVARs for the U.S. 
economy. The second approach follows Cascaldi-Garcia (2022) in including a dummy prior that takes 
the value of 1 during the pandemic and zero otherwise. We do so by including in the matrix V of eq. 
(3) the term  (𝜆1𝜆4)2 in the corresponding to the exogenous variabls variance elements, where 𝜆4 is a 
variance scaling parameter (usually taking large values to represent the uncertainty surrounding 
variables not determined in the model). Yet again, hyperparameters are optimized, resulting in the 
following: μ1=0.2, λ1=0.1, λ2=1 and λ3=1 for both model specifications, with λ4=100 in the second 
specification. 
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The models are estimated up to 2021:Q2 and the exercise was repeated for 2021:Q3 to 2023:Q2. The 

original BVAR yet again is the best specification as no model outperforms it in the one and two quarter 

ahead forecasts, with the Model Confidence Set test also rejecting all other specifications. On the other 

hand, in the four quarter ahead forecast it is the recalibrated BVAR (without the dummy and prior 

adjustment) that provides both the most accurate forecasts (2.26 MAPE vs 2.36 for the original BVAR) and 

is also deemed the only model to be included in the Model Confidence Set by the relevant test. 

 

5. Conclusions 
   Three VARs were estimated using a given set of variables aiming to examine whether Bayesian 

estimation could provide real GDP forecasting gains. Using two different Bayesian VAR estimation 

methods, namely Bayesian estimation using a Minnesota-Litterman prior and a TVP-VAR it is found that 

a relatively simple BVAR performs better than the VECM and a more complex model such as the TVP-

VAR. Furthermore, it is shown that the model does not need any modifications to account for the effect of 

pandemic observations in its coefficients and that only a prior recalibration provides forecasting gains in 

longer term forecasts. However, a word of caution is needed, as the post-COVID-19 period sample is still 

small, and the analysis should most likely be repeated to check whether forecast errors eventually converge 

to their pre-pandemic levels. 

This forecasting exercise demonstrated that even the most basic of Bayesian priors provided forecasting 

gains when it comes to Greek GDP forecasting, but this is only one of the available priors a researcher is 

available to choose from. One could extend this research to include more advanced Bayesian priors such as 

the Sims-Zha prior (Sims and Zha, 1998) that incorporates the existence of unit roots and cointegrating 

relationships in the priors (as it is found in Table 3 that cointegration relationships exist between the 

variables of the given set. Another way this research could be extended is by using the TVP-VAR estimated 

above (possibly using a larger sample if available, to account for the model’s intensive parameterization), 

to compute the variation in the relations between macroeconomic variables, as expressed by the time-

varying coefficients, and thus examine structural changes of the Greek economy over time. This model can 

also be used to perform impulse response analysis on specific dates, which allows examining how 

differently exogenous shocks would affect the Greek economy, at different points in time. 
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