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Abstract

We consider a supply chain in which a retailer orders from a manufacturer(s) who face(s) a stochastic supply

risk (random yield) under single or dual-sourcing cases. In specific, we look into this problem in two different

yield risks: multiplicative and additive. One might intuit that if the retailer shares a manufacturer’s random

yield risk with the manufacturer, the manufacturer will be better off. Interestingly, we confirm that this

intuition is only valid in the additive yield risk but not necessarily in the multiplicative yield risk. Moreover,

under dual sourcing, both manufacturers fiercely compete on their prices (i.e., Bertrand-like competition)

to become the sole source in the additive yield risk, but the manufacturers do not compete as much in the

multiplicative yield risk. Lastly, this paper shows that the supply chain inefficiency may decrease (increase)

as risk-sharing increases in the additive risk model under dual sourcing (single sourcing) while it does not

changeinthemultiplicativeriskmodel.
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1 Introduction

Supply risk has been of great concern to firms in a supply chain, particularly during the Covid-19
period. Among various supply risk factors, random yield is critical and inevitable in various indus-
tries and processes, including the semiconductor industry, the agricultural industry, the chemical
industry, and the transportation process (Keren 2009, Xie et al. 2021). Due to the nature of random
yield, various problems may arise in reality. For example, farmers sow seeds, but they do not know
how many plants they can harvest; semiconductor chips may be subject to even little contamina-
tion, which leads to yield loss; electronic devices or automobile vehicles should go through a quality
test to meet a customer’s demand, which is seldom 100% perfect, and some deliveries may not be
made due to severe weather conditions or geographical risk in certain areas. Among such different
types of random yields, one type would describe the actual yields depending on the order quantity,
such as defective rates, but the other would describe the ones independent of the order quantity,
such as supply shocks in certain areas.

In this study, we analyze and compare two different types of yield models, namely multiplicative
and additive random yields, to understand the firm’s decisions in a supply chain setting. On the one
hand, the multiplicative random yield can occur mainly due to endogenous factors within the supply
chain, such as inherent process limitations and imperfect labor skills. As mentioned previously, the
yield outcome is directly proportional to the initial order quantity, and therefore, the absolute yield
loss gets bigger as the order size increases. On the other hand, the additive random yield can occur
due to exogenous factors outside the supply chain, such as disease and weather in the agricultural
industry (Keren 2009), customs clearance delay (Dalzell et al. 2020), and labor shortages (Smith
2023). In this case, the absolute yield amount is independent of the order size.1

Numerous papers in the operations management (OM) literature have discussed random yield
under various contexts, such as offshore/onshore sourcing (Jung 2020), dual sourcing (Wang et al.
2010, Tang and Kouvelis 2011), aggregate farming (An et al. 2015), dual channel (Niu et al. 2019),
price postponement and risk aversion (Kouvelis et al. 2021), and supply chain coordination (Li
et al. 2013). For example, Tang and Kouvelis (2011) study the benefits of supplier diversification
for dual-sourcing duopolists with a proportional random yield. Following this model, An et al.
(2015) discuss the effects of forming cooperatives in the agricultural sectors. In addition, Jung
(2020) investigates the firm’s sourcing strategies under supply and demand uncertainty and shows
that risk pooling is an essential driver in supplier selection: offshoring, onshoring, or dual. Similarly,
Niu et al. (2019) also study the dual-sourcing and dual-channel decisions with a production random
yield in the presence of a competitive supplier. Typically, random yield papers assume that supply
uncertainty is often represented as a multiplicative or proportional yield (see Yano and Lee (1995)).
This means that the actual outcome of the yield (i.e., the delivered quantity) is proportional to the
initial order quantity. Only a limited number of research papers address supply uncertainty using
an additive yield approach (Keren 2009, Wang et al. 2014, Xiao and Wang 2023), where the actual
yield outcome results in an absolute deduction from the initial order quantity. Most additive yield
papers utilize the fixed-price model to discuss newsvendor and periodic review lot sizing problems.
To the best of our knowledge, our work is the first attempt to understand the random yield in two
ways: multiplicative and additive, with endogenous price-setting.

1While recognizing the possibility of encountering mixed random yield models in practical scenarios, we deliberately
exclude such cases from our study. The reason behind this exclusion is that the combination of both multiplicative
and additive yield models could obscure the fundamental objectives and focus of our research.
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Using these yield models, we study how firms should make their decisions differently in a supply
chain setting. Our research leads to the following important research questions: Does any party in
the supply chain have incentives to share random yield risk with other parties? If so, which party
in the supply chain would receive more benefits? and does this result vary under different sourcing
strategies: single and dual sourcing?

To answer our research questions, this paper analyzes a supply chain with a retailer and a
manufacturer(s). We investigate this setting in two-by-two cases: single and dual-sourcing, with
two different yield models, multiplicative and additive. We find that the results are substantially
different across the two models. One might intuit that if the retailer shares a manufacturer’s random
yield risk with the manufacturer, the manufacturer will be better off. Interestingly, we find that
this intuition is only valid in the additive yield model but not in the widely-used multiplicative
yield model. Moreover, under dual sourcing, both manufacturers fiercely compete on their prices
(i.e., Bertrand-like competition) to become the sole source in the additive yield model, but the
manufacturers do not compete as much in the multiplicative yield model. Lastly, this paper shows
that the supply chain inefficiency may (not) decrease as risk-sharing increases in the additive model
under dual sourcing (single sourcing) while it does not change in the multiplicative model. Our
work sheds light on the firm’s decisions when facing subtle different yield types in practice.

2 Model

We study a supply chain where a retailer orders from a manufacturer(s) who face(s) random yield.
The following equations describe the profit functions of a retailer (denoted by R) and a manufacturer
(denoted by M), respectively.

πR = (a− f(q|Ω))f(q|Ω)− w((1− γ)f(q|Ω) + γq),

πM = w((1− γ)f(q|Ω) + γq)− cq,

where Ω ∈ {Add,Multi} (“Add” as the additive risk scheme and “Multi” as the multiplicative
risk scheme), w is a wholesale price, c is a production cost, q is an order quantity, and a is a
potential market size. As in the literature, a product selling price is determined by a − f(q|Ω).
Throughout the paper, we use f(.|Ω) as the amount of the actual shipments that were delivered
or produced. We assume that all firms do not observe yield’s realization, and the manufacturers
have no incentive to deliver less than their outcomes f(.|Ω) (Tang and Kouvelis 2011). Consistent
with the literature, we assume that the market size, a, should be sufficiently larger than c. In the
multiplicative model, f(q|Multi) = zq where a random yield rate, z ∈ (0, 1], follows a mean of µ
and a standard deviation of σm. In the additive model, f(q|Add) = q − ẑ where a random yield
loss, ẑ ∈ (0, q), follows a mean of ϵ and a standard deviation of σa.

2 This means a random yield
loss, ẑ, should always be positive and not larger than the order quantity, q.

We also introduce γ ∈ [0, 1], which indicates a risk-sharing factor. γ describes how much
the retailer would share the cost of the unfilled order with the manufacturer. In the literature,
researchers have assumed that either the downstream firm can take full responsibility for this
uncertainty (Tang and Kouvelis 2011) or can pay only for what is delivered (Yu et al. 2009). The

2Note that when the random yield rate z increases in the multiplicative model, it results in a higher actual shipment
being generated. Conversely, in the additive model, when the random yield loss ẑ increases, a lower actual shipment
is expected.
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former corresponds to the case with γ = 1, and the latter corresponds to the case with γ = 0. We
parameterize this risk-sharing level to see how all the results vary with the level of risk-sharing.
This risk-sharing concept can be interpreted in an alternative manner. For example, a firm can
have options to obtain a full refund for what is not delivered as promised or defective products.

Under the dual-sourcing case, the profit functions of a retailer and a manufacturer i ∈ {1, 2}
should follow

πR = (a− f(q1, q2|Ω))f(q1, q2|Ω)− w1((1− γ)f(q1|Ω) + γq1)− w2((1− γ)f(q2|Ω) + γq2),

πMi = wi((1− γ)f(qi|Ω) + γqi)− cqi,

where in the multiplicative model, f(q1, q2|Add) = z1q1 + z2q2 and zi ∈ (0, 1] with a mean of µ and
a standard deviation of σm. In the additive model, f(q1, q2|Add) = q1− ẑ1+ q2− ẑ2 and ẑi ∈ (0, qi)
with a mean of ϵ and a standard deviation of σa. We make the following assumption to ensure that

all the firms have incentives to play. µ ≥ c
a and ϵ ≤ min{ (a−c)2

8c ,

√
4(3a2+c2−3σ2

a)−(3a+c)

6 }. This
assumption illustrates that the yield rate (µ) should be large enough, and the production cost and
yield variability should not be too large compared to the random yield loss magnitude (i.e., ϵ).

The game sequence is as follows: the manufacturer(s) decides its (their) wholesale price(s),
and based on its wholesale price(s), the retailer makes an order quantity decision. Lastly, the
manufacturer(s) will produce products upon the retailer’s request under one of two different yield
schemes. We assume that all the information is common knowledge.

3 Analysis

In this section, we analyze two-by-two cases: single and dual sourcing, with two different models,
multiplicative and additive risks.

3.1 Single sourcing

We study the decentralized supply chain with single sourcing first.
Multiplicative model : By backward induction, we start solving the retailer’s problem. With

the multiplicative model, the first-order condition becomes

aµ− w(γ + (1− γ)µ)− 2q(µ2 + σ2
m) = 0.

It is easy to check the second-order condition is negative. By solving the equation above, we can
get the following best response,

q(w) =
aµ− w(γ + (1− γ)µ)

2(µ2 + σ2
m)

.

After plugging q(w) into the manufacturer’s profit function, we solve the manufacturer’s problem
for w. That is,

w∗ =
aµ+ c

2(γ + (1− γ)µ)
.

Thus, the order quantity should be

q∗ =
aµ− c

4(µ2 + σ2
m)

.
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Finally, we can provide the expected retailer and manufacturer’s profits.

E[πM ] =
(aµ− c)2

8(µ2 + σ2
m)

, E[πR] =
(aµ− c)2

16(µ2 + σ2
m)

.

Additive model : By backward induction, we start solving the retailer’s problem. The first-
order condition yields

a− 2q − w + 2ϵ = 0.

It is easy to check the second-order condition is negative. By solving the equation above, we can
get the following,

q(w) =
a− w + 2ϵ

2
. (1)

After plugging q(w) into the manufacturer’s profit function, we solve the manufacturer’s problem
for w. Solving the equation above for w yields the following.

w∗ =
a+ c+ 2γϵ

2
. (2)

Thus, the order quantity should be

q∗ =
a− c+ 2(2− γ)ϵ

4
.

Finally, we provide the expected retailer and manufacturer’s profits.

E[πM ] =
(a− c)2

8
+

γϵ(a+ γϵ)

2
− cϵ(2− γ)

2
, E[πR] =

(a− c)2

16
− γϵ(3a+ c+ 3γϵ)

4
− σ2

a.

We compare two different models shown above to provide interesting insights in terms of risk-sharing
factors, random yield, and variability. Static comparisons derive the following proposition:3

Proposition 1. The risk-sharing factor does not affect the profits for both parties in the multi-
plicative model. In the additive model, however, the more the retailer shares the manufacturer’s
risk, the higher (lower) profit the manufacturer (retailer) would earn.

In the multiplicative model, as γ does not affect both parties’ profits and order quantity, double
marginalization does not change in γ. The manufacturer has no incentive to increase its wholesale
price when γ increases as it will make the retailer significantly decrease the order quantity. It is
intuitive to think that increasing risk-sharing would help the manufacturer earn more profits, but
interestingly, in the widely-used multiplicative model, we do not observe this phenomenon. Thus,
the risk-sharing factor in this case does not affect the supply chain inefficiency.

On the other hand, as the order quantity decreases in γ in the additive model, it is intuitive
to see that increasing risk-sharing does not improve the retailer’s profit but instead makes only
the manufacturer better off. The retailer’s optimal order quantity is solely determined by the
manufacturer’s wholesale price, w, which leads the manufacturer to take advantage of this by
increasing its wholesale price. As the order quantity decreases in γ, the total supply chain profit also

3All proofs are in the Appendix.
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decreases in γ.4 This suggests that the risk-sharing factor remains ineffective in alleviating supply
chain inefficiency (i.e., increasing the effect of double marginalization), but only the manufacturer
would receive more profits.

Now, we compare the multiplicative and additive models in terms of random yield. In practice,
one could think that the more yield loss, the more profit loss. Our models also well explain this
intuition. However, in the additive model, the manufacturer’s profit is not always worse off with
respect to the yield loss. Our result shows that if γ is sufficiently high, the manufacturer’s profit
will increase with even the yield loss. This is because the manufacturer wants to impose a higher
wholesale price with higher γ to extract more profits from the retailer. For the manufacturer,
therefore, charging a higher wholesale price is a means of compensating itself for a random yield
loss.

Proposition 2. The higher the random yield rate (µ) the manufacturer has, the higher profits
both retailer and manufacturer can achieve in the multiplicative model. Likewise, in the additive
model, the retailer can always achieve a higher profit with a lower random yield loss (ϵ), but the
manufacturer can achieve a higher profit with a lower random yield loss (ϵ) only when the risk-
sharing factor (γ) is sufficiently high.

One of the distinct differences between multiplicative and additive models is that the yield loss
depends on its order quantity in the multiplicative model but not in the additive model. It is
intuitive that a higher yield rate benefits the manufacturer in the multiplicative model. In the
additive model, however, a higher yield loss might not harm the manufacturer’s profit. Generally,
the manufacturer’s profit declines when faced with a significant yield loss. However, as Proposition
1 suggests, the retailer’s risk-sharing mitigates the manufacturer’s profit loss resulting from a high
yield loss, thereby compensating for it in the multiplicative model.

Lastly, in the multiplicative model, yield variability lowers both firms’ profits. On the other
hand, increasing yield variability lowers the retailer’s profit, not the manufacturer’s, in the additive
model. Yield variability plays an important role in the order quantity decisions in the multiplicative
model, which impacts both parties’ profits. In the additive model, yield variability is independent
of the order quantity, and it appears only in the retailer’s profit function.

3.2 Dual sourcing

This section studies the dual-sourcing case. That is, one retailer receives homogeneous products
from two identical manufacturers. By backward induction, we start solving the retailer’s problem
first.

Multiplicative model : With the multiplicative model, the first-order condition yields

aµ− wi(γ + (1− γ)µ)− 2qi(µ
2 + σ2

m)− 2qj(µ
2 + cov(z1, z2)) = 0

It is easy to check that the profit function is jointly concave in q1 and q2. By solving the equation
above, we can get the following,

q1(w1, w2) =
aµ(cov(z1, z2)− σ2

m) + (γ + (1− γ)µ)(µ2 + σ2
m)w1 − (γ + (1− γ)µ)(µ2 + cov(z1, z2))w2

2(cov(z1, z2)− σ2
m)(cov(z1, z2) + 2µ2 + σ2

m)
,

q2(w1, w2) =
aµ(cov(z1, z2)− σ2

m)− (γ + (1− γ)µ)(µ2 + σ2
m)w2 + (γ + (1− γ)µ)(µ2 + cov(z1, z2))w1

2(cov(z1, z2)− σ2
m)(cov(z1, z2) + 2µ2 + σ2

m)
.

4 ∂E[πM+πR]
∂γ

= − 1
4
ϵ(a− c+ 2γϵ) < 0, so it is obvious to see that the total expected profit decreases in γ.
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Solving the manufacturer’s problem, we find the equilibrium wi as follows:

w∗
1 = w∗

2 =
aµ(σ2

m − cov(z1, z2)) + c(µ2 + σ2
m)

(γ + (1− γ)µ)(µ2 + 2σ2
m − cov(z1, z2))

.

From the wholesale prices in equilibrium, we see that even when two manufacturers sell homogeneous
products, they do not follow Bertrand-like price competition that both manufacturers are supposed
to race toward the bottom by offering the lowest wholesale price possible. That is, the retailer will
buy both products even if one’s wholesale price is less than the other. Plugging these wholesale
prices back into the qi(w1, w2) yields the order quantity as follows:

q∗1 = q∗2 =
(aµ− c)(µ2 + σ2

m)

2(µ2 + 2σ2
m − cov(z1, z2))(2µ2 + σ2

m + cov(z1, z2))
.

It is interesting to see that q∗i decreases when cov(z1, z2) goes to either σ2
m or −σ2

m if µ2 = σ2
m.

Note that |σ2
m| ≥ cov(z1, z2). If µ2 = σ2

m, the order quantity will be minimum when the two
manufacturers’ random yields are independent. If µ2 ̸= σ2

m, then q∗i increases when cov(z1, z2)
goes to σ2

m − µ2. Finally, we can provide the expected retailer and manufacturer’s profits. For all
i ∈ {1, 2},

E[πMi] =
(aµ− c)2(σ2

m − cov(z1, z2))(µ
2 + σ2

m)

2(2µ2 + σ2
m + cov(z1, z2))(µ2 + 2σ2

m − cov(z1, z2))2
,

E[πR] =
(aµ− c)2(µ2 + σ2

m)2

2(2µ2 + σ2
m + cov(z1, z2))(µ2 + 2σ2

m − cov(z1, z2))2
.

From all the equations above, we find that all the results from Proposition 1 and 2 are carried over
under dual sourcing. That is, under dual sourcing, in the multiplicative model, the risk-sharing
factor does not affect the profits for both parties. The higher random yields the manufacturer has,
the higher profits both retailer and manufacturer can achieve5. Lastly, our result clearly shows that
the total amount of units shipped with dual sourcing is larger than the one with single sourcing,
which is robust to the literature.

Additive model : By backward induction, we start solving the retailer’s problem. The first-
order condition yields

a− 2q1 − 2q2 − w1 + 4ϵ = 0,

a− 2q1 − 2q2 − w2 + 4ϵ = 0.

From the equations above, we can see that the retailer will choose any manufacturer offering the
lowest wholesale price. If the retailer chooses only one firm with the lowest price, this game
becomes a single-sourcing game as described in Section 3.1. Since there is only single sourcing, the
best response of q for w should be Equation 1. By backward induction, the optimal wholesale price
under single sourcing is the same as Equation 2, which we will denote by w1∗ in this section. We
denote this dual-sourcing case with one manufacturer to be 1F . The retailer’s profit function is as
follows, after plugging in q∗ derived from Equation 1.

E[π∗
R1F ] =

1

4
(a− w)2 − wγϵ− σ2

a.

5In the multiplicative model, we find the following results: ∂qi
∂γ

= 0, ∂wi
∂γ

< 0, ∂πMi
∂γ

= 0, ∂πR
∂γ

= 0,

∂p
∂c

=
4µ(µ2+σ2

m)

(3µ2+4σ2
m−cov(z1,z2))(3µ2+4σ2

m+cov(z1,z2))
, ∂w

∂c
=

(µ2+σ2
m)

(γ+(1−γ)µ)(µ2+2σ2
m−cov(z1,z2))

.
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If the two same wholesale prices are offered, then the retailer will split the order. In this case,
to find closed-form solutions, we assume that the retailer utilizes the uniform allocation rule (i.e.,
q1 = q2 = q).6 We denote this dual-sourcing case with two manufacturers to be 2F . Let us examine
the retailer’s profit given any w under 2F (i.e., w1 = w2 = w), which follows the equation below.

πR2F = (a− q1 + ẑ1 − q2 + ẑ2)(q1 − ẑ1 + q2 − ẑ2)

− w1((1− γ)(q1 − ẑ1) + γq1)− w2((1− γ)(q2 − ẑ2) + γq2).

Taking a derivative of the expected profit with respect to q yields the following:7

q∗1 = q∗2 = q∗ =
a− w + 4ϵ

4
.

By plugging these optimal q∗ into the retailer’s profit, we can find the following expected profit
given w1 = w2 = w:

E[π∗
R2F ] =

1

4
(a− w)2 − 2wγϵ− 4σ2

a.

Simply comparing E[π∗
R1F ] and E[π∗

R2F ], it is easy to see that given any w, E[π∗
R1F ] gives us a

higher profit. That is, regardless of the wholesale prices given by the manufacturers, the retailer
will choose only single-sourcing. This leads to the following response from each retailer,

(q1, q2) =


(a−w1+2ϵ

2 , 0), if w1 < w2,

(q∗1, q
∗
2), if w1 = w2,

(0, a−w2+2ϵ
2 ), if w1 > w2,

(3)

where (q∗1, q
∗
2) such that (a−w1+2ϵ

2 , 0) or (0, a−w2+2ϵ
2 ) will arise with 50% of chance each.

This result implies that given the same wholesale prices offered by the manufacturers, the
retailer’s profit will be better off by single sourcing rather than dual sourcing as the yield loss
will double in the additive model with two manufacturers. Moreover, in the additive model, the
variability of the yield loss will be magnified under dual sourcing. Although the retailer would want
to choose only one manufacturer, this upstream firm’s competition leads to different results from
the one in the single-sourcing case.

The additive yield case under dual sourcing is interesting because, unlike the results from
the multiplicative model, the manufacturers now must engage in fierce competition in order to
become single sourcing. In this case, there are two possible profit functions for each manufacturer:
one with only one manufacturer winning (i.e., we denote this by E[πM1F ]) and the other one
with two manufacturers with the same wholesale prices (w1 = w2) given (i.e., we denote this by
E[πM2F ]). Only one manufacturer will be randomly picked by the retailer when w1 = w2, so simply

E[π∗
M2F ] =

E[π∗
M1F ]
2 .

In order to fully analyze this manufacturer’s game, we introduce the following notation. The
wholesale price such that the manufacturer earns zero profit is denoted by

w0∗ =
1

2
(a+ c+ 2γϵ±

√
(a+ c+ 2γϵ)2 − 4c(a+ 2ϵ)).

Using all of the functions and notations defined above, we can derive the following lemma.

6We note that any different allocations will not change our main results.
7The second-order condition is negative.
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Lemma 1. In the dual-sourcing and additive model, both manufacturers optimally choose and offer
their wholesale prices w0∗ = 1

2(a+ c+ 2γϵ−
√
(a+ c+ 2γϵ)2 − 4c(a+ 2ϵ)). However, the retailer

takes only one of the two manufacturers’ offers and decides its order quantity q∗ = 1
4(a− c+4ϵ(1−

γ) +
√

(a+ c+ 4γϵ)2 − 4c(a+ 4ϵ)).

In contrast to the single-source case, manufacturers reduce their wholesale prices in the dual-
sourcing and additive model due to competition. This ultimately leads to minimum profits for
the manufacturers while the retailer reaps all the benefits, which shows Bertrand-like competition.
From Lemma 1, we can show that in equilibrium, the manufacturer’s profit becomes zero and the
retailer’s profit follows:

E[π∗
R] =

1

16
[(a− c− 2γϵ+

√
A)2 − 8γϵ(a+ c+ 2γϵ−

√
A)− 16σ2

a], (4)

where A = (a+ c+ 2γϵ)2 − 4c(a+ 2ϵ).

M
an

uf
ac

tu
re

r’s
 P

ro
fit

Wholesale Price

Note that the parameters are a = 10, c = 1, γ = 0.5, and ϵ = 1.

Figure 1: Illustration of Equilibrium in Additive Model

Figure 1 shows where the equilibrium points should be located from the manufacturer’s per-
spective. The solid line indicates the manufacturer’s expected profit when only one firm with a
lower wholesale price was chosen, and the dotted line indicates the manufacturer’s expected profit
when two firms offer the same wholesale price and only one of them is chosen by the retailer. As
two manufacturers fight over wholesale prices, one manufacturer is always incentivized to deviate
by decreasing its wholesale price and moving up to the profit function under 1F. Then, just like
Bertrand’s game, two manufacturers will end up reaching the same wholesale price where zero profit
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is achieved (i.e., where the ’star’ is illustrated in Figure 1) although the retailer would choose only
one of them.

Using all the findings above, we find how the risk-sharing factor, γ, impacts the profits, q∗, and
w∗ under dual sourcing. The following proposition summarizes the results.

Proposition 3. In the dual-sourcing and additive model, as the risk-sharing factor (γ) increases,
the manufacturer’s optimal wholesale price (w∗) decreases, and the retailer’s optimal order quantity
(q∗) increases. The retailer’s profit increases in the risk-sharing factor (γ) while the manufacturer’s
profit remains zero.

Based on our findings from the single-sourcing and dual-sourcing cases, we can conclude that
the manufacturers’ competition plays a pivotal role in the dual-sourcing and additive model. Specif-
ically, the order quantity increases in the risk-sharing factor, γ, in the dual-sourcing case, as shown
in Proposition 3, while it decreases in γ in the single-sourcing case. This result is mainly due to
the fact that, in the dual-sourcing and additive model, manufacturers’ competition is too intense.
The wholesale prices will be determined solely by the manufacturers’ competition, not the retailer’s
order quantity. Hence, the risk-sharing benefit for the manufacturers ironically intensifies the man-
ufacturer’s competition. Under this situation, the retailer exploits the manufacturers’ competition
by increasing their order quantities. We can clearly see that the upstream competition overturns
the results we find from the single-sourcing case. Lastly, we can find that as the retailer’s profit
increases in γ and the manufacturer’s profit remains the same, the total supply chain profit, in
turn, increases in γ under dual sourcing. This leads to the conclusion that the risk-sharing factor
can mitigate the supply chain inefficiency, and the retailer may have incentives to increase γ.

Figure 2 visually illustrates how the firm’s performance would change in terms of γ, which
analytically summarizes in Proposition 3. The solid (dotted) lines in Figures 2 indicate the firm’s
performance under single sourcing (dual sourcing). Interestingly, all these graphs show that the
results are significantly different under two different sourcing strategies (i.e., single and dual sourc-
ing). Recall that in the multiplicative model, all the main results remain consistent, regardless
of single or dual sourcing. Therefore, we provide the following corollary, which can align with
Proposition 1.

Corollary 1. Under dual sourcing, the more the retailer shares the manufacturer’s risk, the higher
(constant zero) profit the retailer (manufacturer) would earn in the additive model. In the multi-
plicative model, however, the risk-sharing factor does not affect the profits for both parties.

To recap, with single sourcing, the manufacturer’s profit rises while the retailer’s profit decreases
due to the effect of γ. Now, in the context of dual sourcing and the additive case, the overall
profit within the supply chain rises as the retailer’s inclination to share risks increases while the
manufacturer’s profit remains zero. This indicates that in the case of dual sourcing with one
manufacturer, the retailer’s risk-sharing can effectively alleviate supply chain inefficiencies to a
greater extent when compared to single sourcing.

4 Conclusion

This research examines a simple yet commonly observed situation in a supply chain: a random
yield. We find some interesting policy and managerial implications as follows. First, with additive
riskyield,themanufacturermaybenefitfromtheretailer’srisk-sharingundersinglesourcing,but
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Note that the parameters are a = 10, c = 1, and ϵ = 1.

Figure 2: Comparison of Firms’ Performance in Additive
Model

with multiplicative risk yield, the retailer’s risk-sharing does not impact any firms in the supply
chain. This result should be essential for policymakers because if any exogenous random risk occurs
in the future, such as the Covid-19 pandemic or the Russia-Ukraine War, a risk-sharing mechanism
could hurt the downstream firm’s profit but not the upstream firm’s. As the risk-sharing contract is
not easily observed in public, it is fair to think that any government aid, including subsidy, should
be first given to the one who is most vulnerable, in this case, the downstream firm.

In addition, we highlight that the supply chain inefficiency may be mitigated in both risk models
under dual sourcing while the mechanism is significantly different. In the multiplicative model, the
efficiency improvement can be possible due to the risk-pooling under dual sourcing, but in the
additive model, the efficiency improvement can be possible due to the upstream firms’ competition.
This result concludes that managers would want to use dual-sourcing rather than single-sourcing
in any risk models, which is consistent with the existing literature. Lastly, our work highlights that
managers, in reality, may face a mix of these two random yields: additive and multiplicative, e.g.,
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manufacturing semiconductors with delivery problems in a certain area. Thus, it will be crucial to
understand how risk-sharing plays a role in contracting because the outcomes from our paper show
a stark difference.

For future research, we recommend exploring scenarios involving a combination of multiplicative
and additive yield models. It would also be valuable to investigate various situations, including
downstream competition and order allocation games, by effectively incorporating both yield models.
Although we do not cover how to implement the risk-sharing factor as a decision variable in our
research, it would be interesting to see this topic under information asymmetry.
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Appendix

Proof of Proposition 1.
In the additive model, we find the following results: ∂q∗

∂γ < 0, ∂w∗

∂γ = ϵ > 0, ∂E[πM ]
∂γ > 0,

and ∂E[πR]
∂γ < 0. In the multiplicative model, we find the following results: ∂q∗

∂γ = 0, ∂w∗

∂γ < 0,
∂E[πM ]

∂γ = 0, and ∂E[πR]
∂γ = 0.

Proof of Proposition 2.

In the multiplicative model, we find the following results: ∂E[πM ]
∂µ > 0, ∂E[πR]

∂µ > 0, ∂2E[πM ]
∂γ∂µ = 0, and

∂2E[πR]
∂γ∂µ = 0. In the additive model, we find the following results: ∂E[πM ]

∂ϵ = 1
2(−c(2−γ)+γ(a+2γϵ)),

∂E[πR]
∂ϵ < 0, ∂E[πT ]

∂ϵ < 0, ∂2E[πM ]
∂γ∂ϵ > 0, ∂2E[πR]

∂γ∂ϵ < 0, ∂2E[πT ]
∂γ∂ϵ < 0.

Proof of Lemma 1.
From Equation 3, we can find that the best response for each manufacturer is to choose w that
is slightly smaller than the other manufacturer’s wholesale price w. This game resembles the tra-
ditional Bertrand pricing game. The lower bound of w should be w0∗ and the upper bound of w
should be 1

2(a+ c+ 2γϵ+
√
(a+ c+ 2γϵ)2 − 4c(a+ 2ϵ)).

Proof of Proposition 3.
It is easy to check that ∂w0∗

∂γ = 1
2(2ϵ −

2ϵ(a+c+2γϵ)√
(a+c+2γϵ)2−4c(a+2ϵ)

) ≤ 0 and, when γ ∈ [0, 1], ∂q∗

∂γ =

1
4(−4ϵ + 4ϵ(a+c+4γϵ)√

(a+c+4γϵ)2−4c(a+4ϵ)
) ≥ 0 is also true. The manufacturer’s profit remains the same in γ.

The retailer’s profit (E[π∗
R]) follows 1

16 [−8γϵ(a + c + 2γϵ −
√
A) + (a − c − 2γϵ +

√
A)2 − 16σ2

a],

where A = (a+ c+2γϵ)2 − 4c(a+2ϵ). The derivative of the profit, E[π∗
R] w.r.t. γ derives

∂E[π∗
R]

∂γ =
ϵ(a−c+2γϵ−B)(a+c+2γϵ−B)

4B , where B =
√

−4c(a+ 2ϵ) + (a+ c+ 2γϵ)2. Let’s suppose
∂E[π∗

R]
∂γ > 0.

Then, (a−c+2γϵ−B)(a+c+2γϵ−B) > 0, which means that (a−c+2γϵ−B) and (a+c+2γϵ−B)
should be either both positive or both negative. (i) First, assume that both (a− c+ 2γϵ−B) > 0
and (a + c + 2γϵ − B) > 0. In this case, if the first inequality, (a − c + 2γϵ − B) > 0, is true, the
second inequality, (a + c + 2γϵ − B) > 0, must hold as well. Therefore, we derive the following:
(a−c+2γϵ−B) > 0 ⇔ a−c+2γϵ >

√
−4c(a+ 2ϵ) + (a+ c+ 2γϵ)2 ⇔ (a+2γϵ−c)2 > −4c(a+2ϵ)+

(a+ c+2γϵ)2 ⇔ 4c(a+2ϵ) > (a+ c+2γϵ)2− (a+2γϵ− c)2 ⇔ 4ca+8cϵ > 4ac+8cγϵ ⇔ 8cϵ > 8cγϵ.

Since 0 ≤ γ ≤ 1, the last inequality is true. Therefore, it proves that
∂E[π∗

R]
∂γ is always positive. (ii)

As proved in (i), there is no such a case where (a− c+ 2γϵ−B) < 0, because (a− c+ 2γϵ−B) is
always positive. Therefore, there is no need of further proof of the second case. Given the analysis
in (i) and (ii) above, we conclude that the retailer’s profit increases in its risk-sharing-factor, γ.
Proof of Corollary 1.
This proof is omitted.
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