
Bulletin of Applied Economics, 2020, 7(1), 1-65

Machine Learning Treasury Yields

Zura Kakushadze
1
 and Willie Yu

2

Abstract

We give explicit algorithms and source code for extracting factors underlying Treasury yields using

(unsupervised) machine learning (ML) techniques, such as nonnegative matrix factorization (NMF) and

(statistically deterministic) clustering. NMF is a popular ML algorithm (used in computer vision,

bioinformatics/computational biology, document classification, etc.), but is often misconstrued and

misused. We discuss how to properly apply NMF to Treasury yields. We analyze the factors based on

NMF and clustering and their interpretation. We discuss their implications for forecasting Treasury yields

in the context of out-of-sample ML stability issues.

JEL classification numbers: G00, G10, G11, G12, G23

Keywords: non-negative matrix factorization, NMF, clustering, k-means, Treasury, yield, machine

learning, maturity, time series, out-of-sample, in-sample, weight, factor, exposure, source code, principal

component, correlation, forecasting, interest rate, stability, level, slope, steepness, curvature, fixed

income, term structure, yield curve.

1 Introduction and Summary

 It has been long appreciated that there is a structure underlying Treasury yields with different

maturities. The common theme behind parametric factor models (e.g., [Nelson and Siegel, 1987],

[Svensson, 1994], [Diebold and Li, 2006]), those based on principal components (e.g., [Litterman and

Scheinkman, 1991], [Knez, Litterman and Scheinkman, 1994], [Bliss, 1997]) and others (see [Diebold

and Li, 2006] for a literature review) is that the yield term structure is governed by a modest number (3 or

4) of underlying factors, which in some cases are identified as the level, slope (a.k.a. steepness) and

curvature. Understanding the underlying factors is important both for bond portfolio hedging as well as

possibly forecasting future Treasury yields.

 In this paper we ask the following question: Can we gain additional insight into the factors

underlying Treasury yields by applying machine learning techniques, and can they aid with forecasting?

1
 Zura Kakushadze, Ph.D., is the President and a Co-Founder of Quantigic® Solutions LLC

§
 and a Full Professor in

the Business School and the School of Physics at Free University of Tbilisi. Email: zura@quantigic.com
2
 Willie Yu, Ph.D., is a Research Fellow at Duke-NUS Medical School. Email: willie.yu@duke-nus.edu.sg
§
 DISCLAIMER: This address is used by the corresponding author for no purpose other than to indicate his

professional affiliation as is customary in publications. In particular, the contents of this paper are not intended as an

investment, legal, tax or any other such advice, and in no way represent views of Quantigic® Solutions LLC, the

website www.quantigic.com or any of their other affiliates.

Article Info: Received: January 21, 2020. Published online: February 15, 2020

mailto:zura@quantigic.com
mailto:willie.yu@duke-nus.edu.sg

2 Zura Kakushadze and Willie Yu

One immediate question that arises in this regard is which out of a plethora of machine learning

techniques would make sense to apply to this problem. One glaring feature of the Treasury yields is that

they are all nonnegative – at least for now. In this regard, nonnegative matrix factorization (NMF)

[Paatero and Tapper, 1994], [Lee and Seung, 1999], which is an unsupervised machine learning algorithm

(or, more precisely, a set of algorithms), would appear to be a natural candidate. Thus, if 𝑌 is a matrix of

yields (rows correspond to maturities and columns to dates), using NMF we can approximate it via

𝑌 ≈ 𝑊 𝐹, where the nonnegative matrix 𝑊 (rows are labeled by maturities and columns by factors) is

interpreted as the weights with which the 𝐾 factors encoded in the nonnegative matrix 𝐹 (rows are labeled

by factors and columns by dates) contribute into the yields 𝑌. It is the nonnegativity of 𝑊 that allows it to

be interpreted as the weights (unlike in, e.g., the models based on principal components), whereas the

nonnegativity of 𝐹 gives hope that there might be some underlying financial interpretation as the 𝐾

factors themselves are akin to yields, which can be appealing.

 So, in Section 2 we apply NMF to Treasury yields and analyze the resultant factors.
3
 NMF is a

popular algorithm, but is often misconstrued/misused. NMF is a nondeterministic algorithm, so a single

NMF run can produce a rosy-looking yet meaningless in-sample fit. In Section 2 we discuss a correct way

of applying NMF (to Treasury yields) and provide R source code in Appendix A.
4
 Our discussion there

naturally leads us to an alternative approach based on statistically deterministic clustering, which we

discuss in Section 3 and provide R source code in Appendix B. In-sample both the NMF and clustering

approaches produce good fits and reasonably interpretable results. We then turn to the question of out-of-

sample stability and forecasting, which we discuss in detail in Subsection 3.1. We briefly conclude in

Section 4.

2 Nonnegative Matrix Factorization

 We will organize Treasury yields into an 𝑁 × 𝑇 matrix 𝑌𝑖𝑠, where 𝑖 = 1, … , 𝑁 labels maturities,

and 𝑠 = 1, … , 𝑇 labels dates in the time series. Historical data for daily Treasury yield

curve rates is freely available from https://www.treasury.gov/resource-center/data-chart-center/interest-

rates/pages/TextView.aspx?data=yieldAll. The available maturities are 1 Mo, 2 Mo, 3 Mo, 6 Mo, 1 Yr, 2

Yr, 3 Yr, 5 Yr, 7 Yr, 10 Yr, 20 Yr and 30 Yr. The data is available starting January 2, 1990. There are

N/As in the data. The 1 Mo maturity data is available from July 31, 2001. The 2 Mo maturity series

begins on October 16, 2018. The 20 Yr maturity series was discontinued at the end of 1986 and

reinstated on October 1, 1993. The 30 Yr maturity series was discontinued on February 18, 2002 and

reintroduced once again on February 9, 2006.

 Nonnegative matrix factorization (NMF) [Paatero and Tapper, 1994], [Lee and Seung, 1999]

approximates the nonnegative 𝑁 × 𝑇 matrix 𝑌𝑖𝑠 via 𝑌 ≈ 𝑊 𝐹 , where the columns of the nonnegative

𝑁 × 𝐾 matrix 𝑊𝑖𝐴 (𝐴 = 1, … , 𝐾) are interpreted as the weights with which the 𝐾 factors (or “exposures”)

encoded in the nonnegative 𝐾 × 𝑇 matrix 𝐹𝐴𝑠 contribute into 𝑌𝑖𝑠. The weights and factors can always be

normalized such that the columns of 𝑊𝑖𝐴 add up to 1:

3
 NMF was applied to Brazilian yields data in [Takada and Stern, 2015], albeit without the nuances discussed below.

4
 The source code in Appendixes A, B and C hereof is not written to be “fancy” or optimized for speed or in any

other way. Its sole purpose is to illustrate the algorithms we discuss. See Appendix D for some important legalese.

https://www.treasury.gov/resource-center/data-chart-center/interest-rates/pages/TextView.aspx?data=yieldAll
https://www.treasury.gov/resource-center/data-chart-center/interest-rates/pages/TextView.aspx?data=yieldAll

Machine Learning Treasury Yields 3

∑ 𝑊𝑖𝐴 = 1

𝑁

𝑖=1

 (1)

The number 𝐾 of factors is a hyperparameter, which is usually fixed by finding the best (in-sample) fit.

However, below we will also use an independent methodology for inferring 𝐾.

 A nice thing about using NMF in the context of yields is that, since the weights and factors are

nonnegative, a priori we can hope to obtain a clear financial interpretation of the underlying factors.

However, the flipside is that NMF is nondeterministic. That is, an NMF algorithm does not isolate the

global minimum (when minimizing an appropriately defined error function).
5
 Instead, in each run, which

is seeded randomly, NMF finds one out of a large number of local minima. So, while each individual

NMF run can produce a very rosy-looking in-sample fit (which is a common pitfall), even in-sample this

means very little as different runs can produce substantially different-looking results. One way of dealing

with this is to average over a sizable number 𝑃 of runs and look at not only the average value, but also the

error.
6

 Here is one way to do this. Each run labeled by 𝑟 = 1, … , 𝑃 produces the corresponding weights

and factors matrices 𝑊(𝑟) and 𝐹(𝑟). The averaged weights matrix 𝑊 can be defined, element by element,

as the mean (or median) value from the 𝑃 runs. The averaged factors matrix 𝐹 can be defined similarly.

However, each element now has an error, which can be defined as the standard deviation (or MAD =

mean absolute deviation) across the 𝑃 runs. If we define the fitted matrix 𝑌̃ = 𝑊 𝐹, where 𝑊 and 𝐹 are

the averaged matrices defined as above, then the resultant fit of 𝑌̃ to 𝑌 may not be so rosy. Furthermore,

the error bars for 𝑊 and 𝐹 can be substantial, thereby obscuring any financial interpretation gained by

using NMF. So, care is needed when using NMF, and below we will discuss how to reduce the resultant

noise.

 Averaging over multiple NMF runs discussed above may appear straightforward, but there is a

complication. Let us focus on the weights matrix as the issue with the factors matrix is similar. Each run

labeled by 𝑟 = 1, … , 𝑃 produces the 𝑁 × 𝐾 matrix 𝑊(𝑟). However, the columns of these 𝑃 matrices from

different runs are not aligned. We must align them before averaging, which is nontrivial. We can use

clustering to align them. This can be done as follows. Let us bootstrap the 𝑃 matrices 𝑊(𝑟) column-wise

into the 𝑁 × (𝑃 ∙ 𝐾) matrix 𝑊̂. We can now cluster the (𝑃 × 𝐾) columns of 𝑊̂ (each column being an 𝑁-

vector) into 𝐾 clusters using k-means [Lloyd, 1957], [Steinhaus, 1957], [Forgy, 1965], [MacQueen,

1967], [Hartigan, 1975], [Hartigan and Wong, 1979], [Lloyd, 1982]. This way we can map each column

of each matrix 𝑊(𝑟) to the set 1, … , 𝐾, thereby aligning them, so we can now average over them.

 However, there are some possible “hiccups” with the alignment of the columns of the matrices

𝑊(𝑟) described above. First, a priori there is no guarantee that the (𝑃 ∙ 𝐾) columns of 𝑊̂ will be mapped

into precisely 𝐾 batches with 𝑃 elements in each batch. Generally, we could have 𝐾 batches with

𝑃1, … , 𝑃𝐾 elements, where some 𝑃𝐴 (𝐴 = 1, … , 𝐾) are different from 𝑃 . Now, a priori this is not

necessarily problematic when 𝑃𝐴 are all large. In this case we can simply average over the 𝑃𝐴 columns in

5
 The quantity (to be minimized) that measures the fit in this approximation can be defined as the sum (over both 𝑖

and 𝑠) of the squares of the element-by-element errors (which is the Frobenius norm of the error matrix 𝑌 − 𝑊 𝐹).
6
 It appears that this important point was not addressed in [Takada and Stern, 2015].

4 Zura Kakushadze and Willie Yu

each batch to arrive at the 𝐴-th column of 𝑊, albeit the fact that we get nonuniform 𝑃𝐴 can be indicative

of an instability (see below). A more pressing issue arises when 𝑃 is small, to wit, some 𝑃𝐴 can be 0,

which implies that our guess for 𝐾 overshoots and the actual number of factors is smaller. In fact, one

can argue that if 𝑃𝐴 is 1 (or smaller than some predefined threshold), the same conclusion applies. This

can dealt with simply by (repeatedly) reducing the number of factors from 𝐾 to 𝐾 − 1 and reapplying the

above procedure. Finally, k-means is itself a nondeterministic algorithm, so given the same set of 𝑃

matrices 𝑊(𝑟), the clustering of their columns can be different from one k-means run to another. This is

not necessarily problematic for two reasons. First, assuming that the input data 𝑌𝑖𝑠 is not completely

random and there is indeed some underlying factor structure in it, the degree of such nondeterminism is

substantially lower than the nondeterminism inherent in NMF and can be expected to be (well) within the

error bars resulting from averaging over the 𝑃 matrices 𝑊(𝑟) once they are aligned. Second, the k-means

nondeterminism, as we will see below, is related to the noise in the 𝑃 matrices 𝑊(𝑟), and once we reduce

this noise using a method we discuss below, the k-means nondeterminism is also greatly reduced (or

disappears).

2.1. What Is the Number of Factors?

 So, what should we take as the number of factors 𝐾? One way is to keep it as a hyperparameter

and fix it by trial and error, i.e., by identifying the value of 𝐾 for which we get the best in-sample fit. For

this we need to define a measure of what a good fit is. We will come back to this point below. However,

here we will pursue a more holistic approach to fixing 𝐾.

 The idea for fixing 𝐾 we discuss here is not new and was used in the context of statistical risk

models in [Kakushadze and Yu, 2017a] and cancer signatures in [Kakushadze and Yu, 2016a]. Consider

the 𝑁 × 𝑁 serial correlation matrix (𝑖, 𝑗 = 1, … , 𝑁)

 𝛹𝑖𝑗 = Cor(𝑌𝑖𝑠 , 𝑌𝑗𝑠) (2)

We can infer an effective dimensionality of this matrix via eRank (or effective rank) [Roy and Vetterli,

2007], which is defined as the exponential of the Shannon a.k.a. spectral entropy [Campbell, 1960],

[Yang, Gibson and He, 2005].
7
 Using the Treasury yield data (see above) for the period October 16, 2018

through November 22, 2019 (both inclusive),
8
 we get eRank(𝛹𝑖𝑗) ≈ 1.43. So, based on this, we expect 1

or 2 relevant factors. However, once we dig deeper, we find that this result can be a bit misleading and

can be improved. The issue here is that the average pairwise correlation (i.e., the average over the

𝑁(𝑁 − 1) values 𝛹𝑖𝑗 with 𝑖 ≠ 𝑗), unsurprisingly, is whopping 88.82%. This is because typically yields

at different maturities are highly correlated, so we have an “overall mode”
9
 corresponding to the average

pairwise correlation and essentially governed by the first principal component of 𝛹𝑖𝑗. As a result, the

eigenvalue corresponding to the first principal component is much larger than other eigenvalues of 𝛹𝑖𝑗

and contributes into eRank(𝛹𝑖𝑗) with a dominant weight. To circumvent this, we can drop the first

7
 R source code for computing eRank (with and without the first principal component – see below) is given by the

subfunction calc.erank() in the function qrm.erank.pc() in Appendix A of [Kakushadze and Yu, 2017a].
8
 We downloaded the data on November 24, 2019, hence the end-date of the data. The start date is when the 2 Mo

maturity series began (see above), so this period conveniently contains all twelve maturities mentioned above.
9
 A similar “overall mode” is observed in the context of cancer signatures [Kakushadze and Yu, 2016a]. In the

context of a broad equities basket, this “overall mode” is known as the “market mode” (see, e.g., [Bouchaud and

Potters, 2011], [Kakushadze and Yu, 2017a]), which corresponds to the overall movement of the “broad market”.

Machine Learning Treasury Yields 5

principal component from 𝛹𝑖𝑗 thereby obtaining a new matrix 𝛹𝑖𝑗
′ and define the modified eRank as

ModeRank(𝛹𝑖𝑗) = eRank(𝛹𝑖𝑗
′) + 1 [Kakushadze and Yu, 2017a]. The so-defined modified eRank is a

better measure of the effective dimensionality of 𝛹𝑖𝑗 than the vanilla eRank. For our dataset we get

ModeRank(𝛹𝑖𝑗) ≈ 2.34. So, we expect 2 or 3 relevant factors, which is consistent with other approaches

and our actual results (see below).

 An important lesson learnt from analyzing the serial correlation matrix 𝛹𝑖𝑗 is that we have the

dominant “overall mode”. In the context of cancer signatures [Kakushadze and Yu, 2016a] this makes

vanilla NMF noisy. We will see below that the same transpires with yields.

2.2. Vanilla NMF

 Let us now apply vanilla NMF (without any de-noising, which we discuss below) to our dataset

(spanning the period October 16, 2018 through November 22, 2019). We present the results averaged

over 𝑃 = 100 runs (see above), albeit practically speaking one can get similar results with fewer runs.

However, since the dataset is not very large, the code (which we give in Appendix A) runs fast enough, so

𝑃 = 100 is by no means computationally taxing. When combining the 𝑃 runs, we use mean and standard

deviation (as opposed to median and MAD).
10

 As a measure of how good a fit we get, we use two numbers for each maturity. For each row of

the original data matrix 𝑌 we calculate its serial correlation with the corresponding row of the fitted

matrix 𝑌̃ = 𝑊 𝐹. This way we obtain 𝑁 correlations 𝜌𝑖 = Cor(𝑌𝑖𝑠 , 𝑌̃𝑖𝑠). For each maturity, we also

compute the serial sum of squares:

𝐸𝑖 = ∑(𝑌𝑖𝑠 − 𝑌̃𝑖𝑠)2

𝑇

𝑠=1

 (3)

 The results for 𝐾 = 2 are given in Tables 1-2 and Figures 1-4. The results for 𝐾 = 3 are given in

Tables 3-4 and Figures 5-10. From these results it is evident that vanilla NMF is very noisy, with large

error bars. Furthermore, adding the third factor does not improve the fit or reduce the noise. In fact, upon

a closer examination, it is clear that the first factor for 𝐾 = 3 corresponds to the first factor for 𝐾 = 2, the

third factor for 𝐾 = 3 corresponds to the second factor for 𝐾 = 2, while the second factor for 𝐾 = 3,

which is extremely noisy, is new compared with 𝐾 = 2. This new factor has every characteristic of the

level (in the “level”, “steepness” and “curvature” nomenclature of the factors underlying yield curves –

see below), except that it is so noisy that it can only be taken with a grain of salt. Nonetheless, the hint

that we have the level present in the data, and that it is noisy, is very useful. In fact, we anticipated its

presence in the previous subsection when we analyzed the correlation matrix 𝛹𝑖𝑗. The level is related to

the dominant “overall mode” we discussed above. Generally (and not necessarily in the context of NMF),

the level can be defined as the factor 𝐹𝐴𝑠 for which the corresponding weights 𝑊𝑖𝐴 are uniform: 𝑊𝑖𝐴 ≡

1/𝑁 (in the normalization of Eqn. (1), which is convenient in the context of NMF; in other contexts,

equivalently, one would often set 𝑊𝑖𝐴 ≡ 1). Hence the high correlations between different maturities.

10

 The latter give smaller error bars for the weights, but not necessarily for the factors, and do not produce a better

overall fit. Also, the error bars are reduced dramatically with de-noising we discuss below, so this is a moot point.

6 Zura Kakushadze and Willie Yu

The noisiness of the level then is propagated to the other factors and enhances their noisiness.
11

 This has

already been discussed in the context of cancer signatures in [Kakushadze and Yu, 2016a], whose

solution to noisiness we apply here.

2.3. De-Noised NMF

 The idea of [Kakushadze and Yu, 2016a], which we adapt here with appropriate tweaks, is

simple: factor out the noisy “overall mode” before applying NMF. This is what we refer to as de-noising

the original data 𝑌𝑖𝑠 . However, in the context of cancer signatures [Kakushadze and Yu, 2016a], the

corresponding data is comprised of mutation counts with roughly log-normal distributions and an

exponential structure, so de-noising the data there essentially amounts to taking the log of the original

data matrix, demeaning it cross-sectionally, and then re-exponentiating, which results in a positive matrix.

The yields 𝑌𝑖𝑠 do not possess such an exponential structure, so we cannot apply the procedure of

[Kakushadze and Yu, 2016a] here directly. Also, simply demeaning 𝑌𝑖𝑠 cross-sectionally will not work as

the so-demeaned matrix will not be nonnegative thereby defying the purpose of NMF. So, we must find

another way of de-noising the matrix 𝑌𝑖𝑠 such that it would essentially amount to factoring out the level

factor.

 Happily, there is a simple solution to this. For each value of the time index 𝑠 = 1, … , 𝑇, let us

define 𝐿𝑠 = min(𝑌𝑖𝑠| 𝑖 = 1, … , 𝑁), i.e., 𝐿𝑠 is the lowest yield in the 𝑠-th column of 𝑌𝑖𝑠. In a normal yield

curve this will be the lowest maturity yield (which in our data is 1 Mo). However, there can be situations

where this is not the case. Let us now define the de-noised 𝑍𝑖𝑠 matrix as follows: 𝑍𝑖𝑠 = 𝑌𝑖𝑠 − 𝐿𝑠. By

definition 𝑍𝑖𝑠 is nonnegative. Also, 𝐿𝑠 can be thought of as the level factor (see below) and we can hope

that subtracting it from the data will reduce the noise. Basically, 𝑍𝑖𝑠 is the spread between the yield for a

given maturity labeled by 𝑖 and the lowest yield. We can now apply NMF to this de-noised matrix 𝑍𝑖𝑠.

The results for 𝐾 = 2 are given in Tables 5-6 and Figures 11-14. The results for 𝐾 = 3 are given in

Tables 7-8 and Figures 15-20.

 For 𝐾 = 2 the errors (both for the weights, which are shown in Table 5, and the factors, which are

not shown as the number of dates 𝑇 is large) are tiny. The overall fit (Table 6) for the de-noised matrix

𝑍𝑖𝑠 is worse than the vanilla NMF fit (Table 2).
12

 However, vanilla NMF has large errors for the weights

and factors. In fact, a single vanilla NMF run (i.e., 𝑃 = 1, without any averaging) typically will produce

an even better fit than that in Table 2. However, this is meaningless as NMF is nondeterministic and each

new run, while superfluously producing an excellent-looking fit, will be sizably different from the one

before. In fact, this appears to be a commonly overlooked pitfall when applying NMF.
13

 Put another way,

the rosy fit in Table 2 is meaningless as the errors in the weights and the factors are too large for the fit to

be useful.

 Furthermore, for 𝐾 = 3 the errors (for the weights they are shown in Table 7; we do not show the

errors for the factors as 𝑇 is large) are no longer tiny but still smaller than for vanilla NMF. On the other

hand, the overall fit for 𝐾 = 3 (Table 8) is better than for 𝐾 = 2 (Table 6).

11

 Conceptually, this is similar to the noisiness of the intercept factor (whose factor loadings are uniform) in a cross-

sectional linear regression of stock returns, e.g., in the context of serial t-statistic [Fama and MacBeth, 1973].
12

 The fit for the original matrix 𝑌𝑖𝑠 = 𝑍𝑖𝑠 + 𝐿𝑠 is better than that for 𝑍𝑖𝑠; however, here we are not modeling 𝐿𝑠.
13

 This appears to be the case in the analysis of [Takada and Stern, 2015]. Also, one of the motivations behind

[Kakushadze and Yu, 2016a] was precisely that this was routinely the case in applying NMF to cancer signatures.

Machine Learning Treasury Yields 7

 So, while including the third factor superfluously improves the overall fit, it also introduces

sizable errors in (some) weights and/or factors. In this regard, it is instructive to look at the serial

pairwise correlations between the factors 𝜑𝐴𝐵 = Cor(𝐹𝐴𝑠 , 𝐹𝐵𝑠) (𝐴 ≠ 𝐵) and between the factors and the

level 𝜗𝐴 = Cor(𝐹𝐴𝑠 , 𝐿𝑠) . For 𝐾 = 2 we have: 𝜑12 ≈ −70.82% , 𝜗1 ≈ 44.6% and 𝜗2 ≈ −67.77% .

Importantly, these correlations are stable from averaging over different sets of 𝑃 = 100 runs. This is

because for 𝐾 = 2 we have tiny errors, so the local minima that each NMF run finds are very close to the

global minimum. However, for 𝐾 = 3 we have substantial variability in the correlations 𝜑𝐴𝐵 and 𝜗𝐴 ,

which are summarized in Table 9 for 5 different sets of 𝑃 = 100 de-noised NMF runs. We therefore

conclude that the “better” overall fit for 𝐾 = 3 is spurious as the third factor introduces substantial

instability, so the number of stable factors we can infer from our data is 𝐾 = 2, that is, along with the

level 𝐿𝑠.

 Before we conclude this subsection, let us mention a tweak we can apply to the above analysis.

Since we have factored out the level 𝐿𝑠, we can remove the shortest maturity (1 Mo) from the dataset

altogether and run NMF on the so-reduced data. However, unsurprisingly, this does not alter the results

discussed above: 𝐾 = 2 is just as stable with tiny errors, while 𝐾 = 3 has the same instabilities as above.

All in all, our conclusions above do appear to hold.

2.4. Interpreting the Factors

 It is tempting to interpret the 𝐾 = 2 de-noised NMF factors via steepness (a.k.a. slope) and

curvature, as was done in [Diebold and Li, 2006] in the context of the 3-factor model of [Nelson and

Siegel, 1987], which (in the parametrization of [Diebold and Li, 2006] and conformed to our notations

here) is given by

𝑌𝑖𝑠 ≈ 𝛽0𝑠 + 𝜔𝑖1 𝛽1𝑠 + 𝜔𝑖2 𝛽2𝑠 (4)

𝜔𝑖1 =
1 − exp(−𝜆 𝜏𝑖)

𝜆 𝜏𝑖
 (5)

𝜔𝑖2 = 𝜔𝑖1 − exp(−𝜆 𝜏𝑖) (6)

Here: 𝜆 is a parameter (which generally has to be fitted using data, albeit it is fixed differently in [Diebold

and Li, 2006]);
14 𝜏𝑖 are the maturities; 𝜔𝑖1 and 𝜔𝑖2 are the loadings analogous to our weights 𝑊𝑖𝐴; 𝛽1𝑠 and

𝛽2𝑠 are analogous to our factors 𝐹𝐴𝑠 ; and the level 𝛽0𝑠 is analogous to our level 𝐿𝑠 except that 𝛽0𝑠 is

interpreted as a long-horizon factor (as 𝑌𝑖𝑠 ≈ 𝛽0𝑠 for large maturities 𝜏𝑖), while our 𝐿𝑠 typically is a short-

horizon factor. In [Diebold and Li, 2006] 𝛽1𝑠 and 𝛽2𝑠 are interpreted as the slope and curvature,

respectively, with the slope 𝑆𝑠 defined as 𝑆𝑠 = 𝑌10Yr,𝑠 − 𝑌3Mo,𝑠 (the 10 Yr yield minus the 3 Mo yield on a

given date 𝑠), and the curvature 𝐶𝑠 defined as 𝐶𝑠 = 2 𝑌2Yr,𝑠 − 𝑌10Yr,𝑠 − 𝑌3Mo,𝑠 (twice the 2 Yr yield minus

the 10 Yr yield minus the 3 Mo yield).

 So, here we can ask whether we can interpret our factors 𝐹𝐴𝑠 in terms of the slope 𝑆𝑠 and the

curvature 𝐶𝑠. One “hiccup” here is that, for a normal (upward-sloping) yield curve, 𝛽0𝑠 is a long-horizon

factor, while our 𝐿𝑠 is a short-horizon factor. On the other hand, if the yield curve is inverted (not only

downward-sloping but also “inverted humped” curve, which has occurred lately), using the long-horizon

14

 Moreover, a priori this parameter can depend on the time index 𝑠; however, this would make it less predictive.

8 Zura Kakushadze and Willie Yu

factor 𝛽0𝑠 as the level may well be suboptimal and our definition of the level as the minimum maturity

may be more justified. So, a direct comparison of de-noised NMF discussed above with the model of

[Nelson and Siegel, 1987] (that is, in the parametrization of [Diebold and Li, 2006]) may not be

particularly meaningful or useful. Below we will discuss an alternative definition of the level in the

context of de-noised NMF. However, with the above definition of 𝐿𝑠 it is still meaningful to inquire if

our factors 𝐹𝐴𝑠 might be related to the slope 𝑆𝑠 and the curvature 𝐶𝑠, irrespective of the model of [Nelson

and Siegel, 1987].

 First, for the period in our dataset, the serial correlation between the slope 𝑆𝑠 and the curvature 𝐶𝑠

is high, approximately 90.16%, so only one of these factors can be useful in interpreting our factors 𝐹𝐴𝑠.

The first factor 𝐹1𝑠 (Figure 11) has 92.21% correlation with the slope 𝑆𝑠 (and 87.11% correlation with the

curvature 𝐶𝑠). So, we can interpret the first factor 𝐹1𝑠 as the slope. The second factor 𝐹2𝑠 (Figure 12) has

a large negative, −88.34%, correlation with the curvature 𝐶𝑠 defined as above, to wit, 𝐶𝑠 = 2 𝑌2Yr,𝑠 −

𝑌10Yr,𝑠 − 𝑌3Mo,𝑠 (and −87.24% correlation with the slope 𝑆𝑠). So, with a grain of salt, we can interpret

the second factor 𝐹2𝑠 as the negative curvature −𝐶𝑠. In [Diebold and Li, 2006] 𝛽2𝑠 was interpreted as the

curvature 𝐶𝑠, which is defined to be positive for a normal curve (which is concave) and negative for an

inverted curve (which is convex, at least in some segment).
15

 So, it should come as no surprise that for an

inverted curve we have −𝐶𝑠 as one of the factors. Once again, this is to be taken with a grain of salt as

the slope 𝑆𝑠 and the curvature 𝐶𝑠 are highly correlated in this dataset.

2.5. Alternative De-Noising

 Above we de-noised the matrix 𝑌𝑖𝑠 by subtracting from it, for each date 𝑠, the lowest yield on that

date, which we identify with the level 𝐿𝑠 . This is a natural thing to do with the view of having a

nonnegative de-noised matrix. One consequence of this de-noising is that the level 𝐿𝑠 typically (but not

always) corresponds to shorter maturities (which tend to be volatile). There is an alternative way of de-

noising the matrix 𝑌𝑖𝑠 . For each value of the time index 𝑠 = 1, … , 𝑇, let us define 𝐿̃𝑠 = max(𝑌𝑖𝑠| 𝑖 =

1, … , 𝑁), i.e., 𝐿̃𝑠 is the highest yield in the 𝑠-th column of 𝑌𝑖𝑠. In a normal yield curve this will be the

longest maturity yield (which in our data is 30 Yr). However, there can be situations where this is not the

case. Let us now define the de-noised 𝑍̃𝑖𝑠 matrix as follows: 𝑍̃𝑖𝑠 = 𝐿̃𝑠 − 𝑌𝑖𝑠 . By definition 𝑍̃𝑖𝑠 is

nonnegative. Also, 𝐿̃𝑠 can be thought of as the level factor, except that this time it is a long-horizon factor

for a normal curve. So, 𝑍̃𝑖𝑠 is the spread between the highest yield and the yield for a given maturity

labeled by 𝑖. We can now apply NMF to this de-noised matrix 𝑍̃𝑖𝑠. The results for 𝐾 = 2 are given in

Tables 10-11 and Figures 21-24.
16

 (The results for 𝐾 = 3, expectedly, are noisy, so are not given.) The

results are similar to those in Tables 5-6 except that the correlation 𝜌𝑖 for the 30 Yr maturity is low.

However, this correlation is not meaningful and has no import for the overall fit as the 30 Yr maturity

with this alternative de-noising should be dropped altogether. Indeed, out of 𝑇 = 276 dates in the time

series, only 12 dates have nonzero 𝑍̃𝑖𝑠 for the 30 Yr maturity. This is why the corresponding correlation

𝜌𝑖 is low, and also why the first weight (W1) in the last row of Table 10 is 0 and the second weight (W2)

in the same row is small. So, we can remove the 30 Yr maturity from 𝑍̃𝑖𝑠 altogether and run NMF on the

15

 This is opposite to the standard definition: the curvature is positive (negative) for convex (concave) functions.
16

 Note that the weights in Figures 23-24 are “upside-down” compared with the weights in Figures 13-14. This is

because in the latter case the de-noised matrix is the spread between the yield and the lowest yield, while in the

former case the de-noised matrix is the spread between the yield and the highest yield, hence the “flipping”.

Machine Learning Treasury Yields 9

so-reduced dataset. The results are only slightly different from those in Tables 10-11 (with the 30 Yr

maturity dropped).

 For the serial pairwise correlations between the factors 𝜑𝐴𝐵 = Cor(𝐹𝐴𝑠, 𝐹𝐵𝑠) (𝐴 ≠ 𝐵) and

between the factors and the level 𝜗𝐴 = Cor(𝐹𝐴𝑠 , 𝐿̃𝑠) (see Subsection 2.3) we have: 𝜑12 ≈ −87.53%,

𝜗1 ≈ 75% and 𝜗2 ≈ −79.74%. The first factor 𝐹1𝑠 (Figure 21) has 98.15% correlation with the slope 𝑆𝑠

(and 83.95% correlation with the curvature 𝐶𝑠). So, we can interpret the first factor 𝐹1𝑠 as the slope. The

second factor 𝐹2𝑠 (Figure 22) has a large negative, −96.36%, correlation with the curvature 𝐶𝑠 defined as

above, to wit, 𝐶𝑠 = 2 𝑌2Yr,𝑠 − 𝑌10Yr,𝑠 − 𝑌3Mo,𝑠 (and −94.25% correlation with the slope 𝑆𝑠). So, with a

grain of salt (as 𝑆𝑠 and 𝐶𝑠 have 90.16% correlation), we can also interpret the second factor 𝐹2𝑠 as the

negative curvature −𝐶𝑠.

 Using 𝐿̃𝑠 vs. 𝐿𝑠 as the level is not a matter of principle but depends on the circumstances such as

whether the curve is normal, inverted, (inverted) humped, etc. With NMF we cannot use an arbitrary fixed

maturity as the level (e.g., in [Diebold and Li, 2006] the 10 Yr yield was used as the level) for the simple

reason that factoring it out from the matrix 𝑌𝑖𝑠 will produce negative entries thereby defying the purpose

as the input data for NMF must be nonnegative.

3 Statistical Cluster Factors

 A connection between NMF and clustering (and k-means in particular) has been long appreciated

(see, e.g., [Ding, He and Simon, 2005], [Zass and Shashua, 2005], [Shahnaz et al, 2006]). In some cases

NMF can essentially be clustering in disguise (see, e.g., [Kakushadze and Yu, 2016a] in the context of

cancer signatures), to wit, when the weights matrix has a structure where many weights, while nonzero,

are relatively small, so there is a semblance of a clustering structure. It is therefore natural to wonder

whether there is an underlying clustering structure in the Treasury yields, especially that maturities

“naturally” split into short, medium and long. Also, since the number of maturities is small, one may hope

to have stability in the clusterings.

 Basically, there are two main parts two the story here. If we apply nondeterministic clustering

such as k-means to yields (or their normalized versions – see below), we can get different clusterings

from different k-means runs, which is conceptually similar to what transpires in NMF. One way of

dealing with this is by taking a statistical approach as in [Kakushadze and Yu, 2016b], which was

originally developed in the context of equities and later adapted in the context of cancer signatures

[Kakushadze and Yu, 2017b, 2017c]. The idea is simple. Let us have 𝑃 different k-means runs. Each k-

means run labeled by 𝑟 (𝑟 = 1, … , 𝑃) produces a clustering with 𝐾 clusters, which maps the 𝑁 vectors

labeled by 𝑖 (𝑖 = 1, … , 𝑁) to 𝐾 clusters. For a given k-means run labeled by 𝑟 , let us denote the

corresponding clustering map via 𝐺(𝑟) (so 𝐺(𝑟): {1, … , 𝑁} → {1, … , 𝐾}) . We can aggregate these

clusterings (assuming the clusters in different clusterings are aligned – see below) by adding the 𝑁 × 𝐾

binary matrices 𝛿𝐺(𝑟)(𝑖),𝐴 from the 𝑃 runs (𝐺(𝑟)(𝑖) labels the cluster to which the vector labeled by 𝑖

belongs). The so-aggregated 𝑁 × 𝐾 matrix 𝑄𝑖𝐴 is not binary: it is a matrix of counts with nonnegative

elements. We can now generate a binary matrix 𝐻𝑖𝐴 from this counts matrix by setting, for each value of

𝑖, 𝐻𝑖𝐴 = 1 for the value of 𝐴 for which 𝑄𝑖𝐴 is the largest; otherwise 𝐻𝑖𝐴 = 0. A priori there can be ties in

this process (i.e., for a given value of 𝑖, there can be more than one elements in argmax𝐵 𝑄𝑖𝐵), which can

10 Zura Kakushadze and Willie Yu

be resolved by taking the most populous cluster among the ties (see [Kakushadze and Yu, 2016b] for

details). The binary matrix 𝐻𝑖𝐴 defines a binary clustering map 𝐺: {1, … , 𝑁} → {1, … , 𝐾}, where 𝐻𝑖𝐴 =

𝛿𝐺(𝑖),𝐴 . So, this way we can remove the nondeterminism of k-means subject to the following two

“caveats” (which will be resolved).

 First, above we assume that the clusters in different clusterings corresponding to the 𝑃 different

k-means runs are aligned. However, just as the factors in different NMF runs are not necessarily aligned,

here too we have no guarantee that the clusters are aligned. In fact, these clusters can look rather different

from run to run. However, just as in NMF, we can bootstrap the cluster centers (which are 𝐾 × 𝑇

matrices) row-wise, obtain a (𝑃 ∙ 𝐾) × 𝑇 matrix this way, and then cluster its (𝑃 ∙ 𝐾) rows into 𝐾 clusters

via k-means, thereby aligning the clusters from the 𝑃 different k-means runs (similarly to what we did

with NMF). One “hiccup” here is that we may end up with fewer than 𝐾 clusters. However, this is not

problematic; in fact, it means that our original guess for the number of clusters overshoots, and we can

simply proceed with the smaller number 𝐾′ of the resultant clusters. One remaining cloud in the sky is

that we use k-means, a nondeterministic algorithm, for aligning the clusters, so the final result may well

be nondeterministic, i.e., for different sets of 𝑃 k-means runs we may end up with different clusterings

(albeit this possible remaining nondeterminism can be expected to be much milder than that of k-means,

that is, assuming the data indeed has a reasonable underlying clustering structure). This is dealt with via

the so-called *K-means algorithm of [Kakushadze and Yu, 2017b]. The idea is simple. We can take a

large number 𝑀 of different sets of 𝑃 k-means runs (each set gives a clustering) and take the clustering

that arises most frequently in these 𝑀 sets.

 *K-means is a statistically deterministic algorithm and produces a unique answer. If the size of

the data is too large, then the number of k-means runs (𝑀 ∙ 𝑃) can be too large to make sense

computationally. However, for smaller datasets, such as the yields data we are working with, this

typically is not expected to pose an issue. In fact, in our runs with 𝐾 = 2 and 𝐾 = 3 (see below) on the

same data as we used with NMF above, 𝑀 = 100 sets with 𝑃 = 100 runs in each set all produced

identical clusterings (so *K-means was not even required for this dataset). This implies that the clustering

structure (at least for these values of 𝐾) is fully stable.

 Now that we have discussed how to cluster, we must also address what to cluster. We could

cluster the 𝑁 rows of the matrix 𝑌𝑖𝑠 (each row being a 𝑇-vector, and in k-means we can use the default

Euclidean distance between two 𝑇-vectors as the similarity criterion). However, different maturities (to

which the rows of 𝑌𝑖𝑠 correspond) have different serial volatilities (the shorter maturity yields tend to be

more volatile). So, as is common in clustering, we can normalize the rows of 𝑌𝑖𝑠 as follows: 𝑋𝑖𝑠 =

 𝑌𝑖𝑠 / 𝜎𝑖, where 𝜎𝑖 = √Var(𝑌𝑖𝑠) are serial volatilities (Var(∙) is a serial variance). We can then cluster 𝑋𝑖𝑠,

whose rows are now properly normalized.

 The second part of the story is how to obtain the weights once we get the clusters. A simple

solution is that we use one-factor NMF within each cluster, so we have 𝐾 factors, all of which, along with

all the weights, are nonnegative. One-factor NMF is straightforward to compute. This is because one-

factor NMF is equivalent to a singular value decomposition (SVD) truncated to the first eigenvalue.

Thus, according to the Eckart-Young-Mirsky theorem [Eckart and Young, 1936], the closest (w.r.t.

minimizing the Frobenius norm) rank-𝑘 approximation of a matrix is given by the rank-𝑘 SVD truncation

of said matrix. So, the best rank-1 approximation for an 𝑛 × 𝑚 matrix 𝐴𝑖𝑠 is given by the rank-1 SVD

Machine Learning Treasury Yields 11

truncation: 𝐴𝑖𝑠 ≈ √𝜆 𝑢𝑖 𝑣𝑠, where 𝑢𝑖 is the first principal component of the matrix 𝐴𝐴𝑇 , 𝑣𝑠 is the first

principal component of 𝐴𝑇𝐴, and 𝜆 is the corresponding eigenvalue (which is the same for both 𝑢𝑖 and

𝑣𝑠). Next, according to the Perron-Frobenius theorem [Perron, 1907], [Frobenius, 1912], all the elements

of the first principal component of a positive matrix are all positive (or can be chosen to be such as the

signs thereof can always be flipped simultaneously), so both 𝑢𝑖 and 𝑣𝑠 are positive if 𝐴𝑖𝑠 is positive, and

thus the rank-1 SVD truncation of a positive matrix produces its one-factor NMF.
17

 So, assuming we have 𝐾 binary clusters 𝐶𝐴 (𝐴 = 1, … , 𝐾), for a given cluster labeled by 𝐴, we

can compute the weights 𝑊𝑖𝐴 for 𝑖 ∈ 𝐶𝐴 by simply taking the first principal component of the matrix

(𝑌𝑌𝑇)𝑖𝑗, 𝑖, 𝑗 ∈ 𝐶𝐴, and normalizing it such that its elements add up to 1. We can compute the factors 𝐹𝐴𝑠

by taking the first principal component of the 𝑇 × 𝑇 matrix ∑ 𝑌𝑖𝑠 𝑌𝑖𝑡𝑖∈𝐶𝐴
 (𝑠, 𝑡 = 1, … , 𝑇) and normalizing

it accordingly (see above). Also note that 𝑊𝑖𝐴 = 0 for 𝑖 ∉ 𝐶𝐴.

 The R source code is given in Appendix B. The results for 𝐾 = 2 are given in Tables 13-14
18

 and

Figures 25-26, and the results for 𝐾 = 3 are given in Tables 15-16 and Figures 27-29.
19

 In this

clustering-based approach there is no need to de-noise the matrix 𝑌𝑖𝑠 (or 𝑋𝑖𝑠) as there are no error bars: the

result is (statistically) deterministic as we get a unique clustering, and then the weights (and factors)

within each cluster are also uniquely determined (the rank-1 SVD truncation corresponds to the global

optimum – see above). However, along with the slope 𝑆𝑠 and the curvature 𝐶𝑠 (see above), as in [Diebold

and Li, 2006], it is instructive to also define the level 𝐿𝑠 = 𝑌10Yr,𝑠 as the 10 Yr yield and compute the

correlations for the factors 𝐹𝐴𝑠 with 𝐿𝑠, 𝑆𝑠 and 𝐶𝑠. The latter are themselves highly correlated (serially).

Thus: Cor(𝐿𝑠, 𝑆𝑠) ≈ 84.57% , Cor(𝐿𝑠, 𝐶𝑠) ≈ 74.60% , and (as already mentioned above) we have

Cor(𝑆𝑠 , 𝐶𝑠) ≈ 90.16%.

 For 𝐾 = 2 we have the following serial correlations: Cor(𝐹1𝑠, 𝐿𝑠) ≈ 78.77% , Cor(𝐹1𝑠, 𝑆𝑠) ≈

33.92% , Cor(𝐹1𝑠, 𝐶𝑠) ≈ 28.67% ; Cor(𝐹2𝑠, 𝐿𝑠) ≈ 99.87% , Cor(𝐹2𝑠, 𝑆𝑠) ≈ 82.79% , Cor(𝐹2𝑠 , 𝐶𝑠) ≈

74.54%. So, the first factor (Figure 25), which is a short-horizon factor (Table 13), has a relatively high

correlation with the level, but low correlations with the slope and the curvature. The second factor

(Figure 26), which contains medium and long maturities (Table 13), is almost 100% correlated with the

level and has relatively high correlations with the slope and the curvature. The serial correlation between

the factors 𝜑12 = Cor(𝐹1𝑠 , 𝐹2𝑠) ≈ 80.69% is high. The fit (Table 14) is good (and better than for NMF,

even without de-noising).

 Next, for 𝐾 = 3 we have the following serial correlations: Cor(𝐹1𝑠 , 𝐿𝑠) ≈ 73.89%, Cor(𝐹1𝑠 ,

𝑆𝑠) ≈ 26.75%, Cor(𝐹1𝑠 , 𝐶𝑠) ≈ 21.54%; Cor(𝐹2𝑠 , 𝐿𝑠) ≈ 97.29%, Cor(𝐹2𝑠 , 𝑆𝑠) ≈ 70.26%, Cor(𝐹2𝑠 ,

𝐶𝑠) ≈ 62.21%; Cor(𝐹3𝑠 , 𝐿𝑠) ≈ 99.89%, Cor(𝐹3𝑠 , 𝑆𝑠) ≈ 84.52%, Cor(𝐹3𝑠 , 𝐶𝑠) ≈ 76.51%. So, the

first factor (Figure 27), which is a short-horizon factor (Table 15), has a relatively high correlation with

the level, but low correlations with the slope and the curvature (similarly to the 𝐾 = 2 case). The second

factor (Figure 28) is built from the 6 Mo, 1 Yr and (perhaps surprisingly) 30 Yr maturities (Table 15).

17

 Interestingly, the R package “NMF” [Gaujoux and Seoighe, 2010] (see Appendix A) for one-factor NMF

produces slightly (but not negligibly) worse results than the rank-1 SVD truncation. The R function foo.nmf(n, m)

in our Appendix C compares one-factor NMF (using said package) with the rank-1 SVD truncation of an 𝑛 × 𝑚

matrix.
18

 Table 12, which we refer to in Appendix A, gives some sample Treasury yield data from our dataset (see above).
19

 We do not plot the weights as they vanish outside the clusters, while the within-cluster weights are rather close.

12 Zura Kakushadze and Willie Yu

The third factor (Figure 29) is built from medium and long maturities (Table 15). Both the second and the

third factors are almost 100% correlated with the level and have relatively high correlations with the slope

and the curvature (especially the third factor). The serial correlations between the first and the other two

factors are relatively high, and the correlation between the second and the third factors is very high:

𝜑12 ≈ 87.10%, 𝜑13 ≈ 73.77%, 𝜑23 ≈ 97.26%. The overall fit (Table 14) is good. However, 𝐾 = 3

does not appear to add value compared with 𝐾 = 2: the second and the third factors are too highly

correlated and have similar correlations with the level, the slope and the curvature. This can be traced to

the fact that the level, the slope and the curvature are already highly correlated. The eRank (see above) of

their correlation matrix is 1.51. So, it appears to make sense to model the yields with a 2-factor model (at

least for this time period) instead of 3.

3.1. What About Forecasting?

 Forecasting Treasury yields based on historical yield data alone generally is challenging (see,

e.g., [Duffee, 2002], [Diebold and Li, 2006], [Duffee, 2013], [Almeida et al, 2018], and references

therein). Using machine learning methods such as NMF and clustering discussed above can achieve rosy-

looking fits in-sample. However, out-of-sample forecasting is still not a cake walk by any stretch. There

are basically two parts to the story here, to which we now turn.

 So, in the factor model context, where we approximate the matrix 𝑌 ≈ 𝑊 𝐹, we have the weights

𝑊𝑖𝐴 and the factors 𝐹𝐴𝑠. To be able to forecast 𝑌𝑖𝑠 out-of-sample, we must be able to forecast the factors

𝐹𝐴𝑠. Looking even at the in-sample plots of the factors, e.g., Figures 25-26, it is clear that the factors have

sizable stochastic (noise) components to them (which we can expect to get even worse out-of-sample),

and they further have nontrivial temporal dynamics with regime changes, etc. So, it is clear that

forecasting the factors 𝐹𝐴𝑠 is challenging. E.g., we can try to identify (short-horizon) trends

(“momentum”) in the factors and forecast changes based on such trends. However, because of the

inherent noise, such “momentum” (computed as, e.g., the temporal slope in a given factor) will have

sizable errors thereby affecting the forecasted value of said factor. Furthermore, such forecasting

produces notoriously poor results when trend reversals take place, and not much can be done with that.
20

Así es la vida.

 However, even if somehow – magically – we could forecast the factors with high accuracy

(which is challenging), this by itself would not suffice for accurately forecasting the yields. This is

because we also must worry about the weights 𝑊𝑖𝐴, which can and do sizably change from period to

period thereby resulting in out-of-sample instability. This is a typical pitfall of using machine learning

methods that attempt to learn almost everything (barring hyperparameters such as the number of

factors/clusters 𝐾) from the data itself. In this case this amounts to determining the weights 𝑊𝑖𝐴 (which

are the loadings matrices in the regression nomenclature) from the data as opposed to fixing them based

on some fundamental or holistic considerations. However, the price one must pay is that these weights

are nonstationary. This can be seen from Figures 30-31, where we plot the weights 𝑊𝑖𝐴 in the 𝐾 = 2

cluster model above computed using 21-trading-day (that is, monthly) periods into which we break our

data. In Figures 32-33 we plot the weights 𝑊𝑖𝐴 in the 𝐾 = 2 cluster model above computed daily (i.e.,

∑ 𝑊𝑖𝐴 𝐹𝐴𝑠
𝐾
𝐴=1 is fitted into 𝑌𝑖𝑠 for each date 𝑠 separately to compute the corresponding weights 𝑊𝑖𝐴

20

 In this regard, autoregressive models such as AR(1) (which was utilized in [Diebold and Li, 2006] for forecasting

the factors in the context of the model of [Nelson and Siegel, 1987]) and similar approaches may be of little help.

Machine Learning Treasury Yields 13

daily). Unsurprisingly, the daily weights (Figures 32-33) are quite noisy. Both the 21-day and daily

weights are nonstationary, which makes forecasting challenging. As an aside, note that the short-maturity

weights (Figures 30 and 32) have been converging (flattening segment), while the long-maturity weights

(Figures 30 and 32) have been diverging (steepening segment).

4 Concluding Remarks

 In light of our discussion above on forecasting, it is natural to wonder if and how the forecasting

challenges are different in other factor model approaches. For instance, factor models based on (the first

three) principal components (see [Litterman and Scheinkman, 1991], [Bliss, 1997]) have been studied in

detail.
21

 However, forecasting in such models is also challenging. This is because higher-than-first

principal components are notoriously unstable out-of-sample. The first principal component tends to be

less unstable. However, weights based on the first principal component are still substantially

nonstationary. Thus, note that in the clustering models we discussed in Section 3, the weights are the

within-cluster first principal components.
22

 And they are significantly unstable out-of-sample. So, to

recap, higher principal components make out-of-sample instability even worse. Also, on another note,

some weights (and factors) in the principal component approach are negative and lack the (at least

superfluously) appealing nonnegativity property of NMF and the models based on clustering.

 From the forecasting viewpoint, the approach of [Diebold and Li, 2006] in using the parametric

model of [Nelson and Siegel, 1987]
23

 (see Eqns. (4), (5) and (6)) would appear to be appealing. In this

model the weights 𝑊𝑖𝐴 parametrically depend on the maturities 𝜏𝑖, through the sole parameter 𝜆 (which in

[Diebold and Li, 2006] was not fitted but fixed using exogenous considerations), which might appear to

bode well with out-of-sample stability. However, this parameter 𝜆 itself is nonstationary and varies from

period to period. Furthermore, while the weights in this model are expressly positive, for this model to

explain non-upward-sloping curves (downwards-sloping, “humped”, “inverted humped”), some factors

must be negative. And at least for shorter horizons (e.g., 1 month) the model does not forecast well

[Diebold and Li, 2006]. So, while a parametric approach has its appeals, apparently, there is no free

lunch.

 Let us also mention that, while above we discussed forecasting in the context of the clustering

models of Section 3, the same conclusions apply to NMF-based models. There too, as in any similar

machine learning method, the weights are learned from the data and there is no reason why they would be

stationary, and typically in such problems they are far from it.

21

 Including an application of this approach to short-maturity instruments [Knez, Litterman and Scheinkman, 1994].
22

 Thus, the clustering models of Section 3 are conceptually similar to the equity risk models of [Kakushadze, 2015].
23

 Note that in our analyses on our dataset we did not find the “second curvature” (4th) factor of [Svensson, 1994].

However, this paper is not intended to be empirically exhaustive and other time periods may turn up other factors.

14 Zura Kakushadze and Willie Yu

Appendix A: R Source Code for NMF Algorithm

 In this Appendix we give R (R Project for Statistical Computing, https://www.r-project.org/)

source code for the vanilla and de-noised NMF algorithms discussed in Section 2. The source code

consist of a single function treasury(k, n = 100, denoise) and is straightforward. Internally

it loads and uses the R package “NMF” [Gaujoux and Seoighe, 2010]. The inputs of treasury() are:

the number of factors k to try (which is denoted by 𝐾 in the main text); the number n of NMF runs to

average over (which is denoted by 𝑃 in the main text); and denoise, whose values are as follows:

denoise = 0 corresponds to vanilla NMF (without de-noising); denoise = 1 corresponds to de-

noised NMF discussed in Subsection 2.3; and denoise = 2 corresponds to NMF with alternative de-

noising discussed in Subsection 2.5. Furthermore, the treasury() function internally reads a data file

(which is a flat tab-delimited text file) treasury.txt. This file is a (𝑇 + 1) × (𝑁 + 1) table

containing the Treasury yields data, which can be freely downloaded from:

https://www.treasury.gov/resource-center/data-chart-center/interest-

rates/pages/TextView.aspx?data=yieldAll.

Its first row is the column labels. Below the first row, the first column is the 𝑇 dates, and the other 12

columns are the Treasury yields corresponding to the 𝑁 = 12 maturities (1 Mo, 2 Mo, 3 Mo, 6 Mo, 1 Yr,

2 Yr, 3 Yr, 5 Yr, 7 Yr, 10 Yr, 20 Yr and 30 Yr). To aid with visualizing this data, sample data from the

treasury.txt file is given in Table 12. The function treasury() outputs two (flat tab-delimited)

text files, one with the weights 𝑊𝑖𝐴 (averaged over n NMF runs) and the corresponding standard

deviations, and the other with the correlations 𝜌𝑖 and errors 𝐸𝑖 (see Subsection 2.2 for details). It also

outputs JPEG files with the plots of the weights 𝑊𝑖𝐴 (vs. maturity) and factors 𝐹𝐴𝑠 (vs. time). Finally, it

prints on-screen various quantities discussed in Section 2, such as the effective rank (eRank) of the serial

correlation matrix 𝛹𝑖𝑗 between different maturities, the serial correlation matrix between the factors

(which include the level when denoise = 1 or denoise = 2), and the serial correlation matrix

between the factors (which include the level when denoise = 1 or denoise = 2) and the slope 𝑆𝑠

and the curvature 𝐶𝑠. Internally the function treasury() calls a subfunction calc.erank(), which

is a subfunction of the function qrm.erank.pc() in Appendix A of [Kakushadze and Yu, 2017a].

treasury <- function (k, n = 100, denoise)

{

 require(NMF)

 no.na <- function(x)

 {

 return(!any(x == "N/A"))

 }

 calc.erank <- function(x, excl.first)

 {

 take <- x > 0

 x <- x[take]

 if(excl.first)

 x <- x[-1]

https://www.r-project.org/
https://www.treasury.gov/resource-center/data-chart-center/interest-rates/pages/TextView.aspx?data=yieldAll
https://www.treasury.gov/resource-center/data-chart-center/interest-rates/pages/TextView.aspx?data=yieldAll

Machine Learning Treasury Yields 15

 p <- x / sum(x)

 h <- - sum(p * log(p))

 er <- exp(h)

 if(excl.first)

 er <- er + 1

 return(er)

 }

 x <- read.delim("treasury.txt", header = F)

 x <- as.matrix(x)

 hdr <- x[1,]

 hdr <- hdr[-1]

 x <- x[-1,]

 d <- x[, 1]

 x <- x[, -1]

 take <- apply(x, 1, no.na)

 x <- x[take,]

 mode(x) <- "numeric"

 q <- cor(x)

 q1 <- q

 diag(q1) <- NA

 print(paste("Average pairwise correlation = ",

 round(mean(q1, na.rm = T) * 100, 2), sep = ""))

 p <- eigen(q)$values

 print(paste("eRank = ",

 round(calc.erank(p, excl.first = F), 2), sep = ""))

 print(paste("ModeRank = ",

 round(calc.erank(p, excl.first = T), 2), sep = ""))

 slope <- x[, 10] - x[, 3]

 curv <- 2 * x[, 6] - x[, 10] - x[, 3]

 if(denoise == 1)

 {

 lvl <- apply(x, 1, min)

 x <- x - lvl

 ### x <- x[, -1] # Remove 1 Mo maturity

 ### hdr <- hdr[-1]

 }

 if(denoise == 2)

 {

 lvl <- apply(x, 1, max)

 x <- lvl - x

 ### x <- x[, -12] # Remove 30 Yr maturity

 ### hdr <- hdr[-12]

 }

 x <- t(x)

 red.k <- T

 while(red.k)

16 Zura Kakushadze and Willie Yu

 {

 print(paste("Trying k = ", k, sep = ""))

 w.av <- w.sd <- w.med <- w.mad <- matrix(0, nrow(x), k)

 y.av <- y.sd <- y.med <- y.mad <- matrix(0, k, ncol(x))

 w.b <- matrix(0, nrow(x), k * n)

 y.b <- matrix(0, k * n, ncol(x))

 for(i in 1:n)

 {

 v <- nmf(x, rank = k, nrun = 1)

 w <- basis(v)

 w.n <- colSums(w)

 w <- t(t(w) / w.n)

 y <- coef(v)

 y <- y * w.n

 w.b[, (1:k) + (i - 1) * k] <- w

 y.b[(1:k) + (i - 1) * k,] <- y

 }

 if(n > 1)

 {

 cl.w <- kmeans(t(w.b), k, iter.max = 100)

 cl.w <- cl.w$cluster

 }

 else

 {

 w.av <- w.med <- w.b

 w.sd[] <- w.mad[] <- 0

 y.av <- y.med <- y.b

 y.sd[] <- y.mad[] <- 0

 break

 }

 red.k <- F

 for(j in 1:k)

 {

 take.w <- cl.w == j

 print(paste("Number of elements in cluster ",

 j, " = ", sum(take.w), sep = ""))

 if(sum(take.w) > 1)

 {

 w.av[, j] <- rowMeans(w.b[, take.w])

 w.sd[, j] <- apply(w.b[, take.w], 1, sd)

 w.med[, j] <- apply(w.b[, take.w], 1, median)

 w.mad[, j] <- apply(w.b[, take.w], 1, mad)

 y.av[j,] <- colMeans(y.b[take.w,])

 y.sd[j,] <- apply(y.b[take.w,], 2, sd)

 y.med[j,] <- apply(y.b[take.w,], 2, median)

 y.mad[j,] <- apply(y.b[take.w,], 2, mad)

 }

 else

 {

 print("Reducing k")

 red.k <- T

 k <- k - 1

Machine Learning Treasury Yields 17

 break

 }

 }

 }

 time.stamp <- paste(Sys.Date(), ".",

 format(Sys.time(), "%H%M%S"), sep = "")

 days <- ncol(y.av)

 my.col <- c("green", "red", "blue", "black")

 for(j in 1:nrow(y.av))

 {

 file <- paste("Factor.", j, ".", time.stamp,

 ".jpeg", sep = "")

 jpeg(file = file, width = 1800, height = 1800,

 units = "px", res = 300)

 col <- my.col[j]

 y.max <- max(y.av[j,] + 1.1 * y.sd[j,])

 y.min <- min(y.av[j,] - 1.1 * y.sd[j,])

 plot(1:days, y.av[j,], type = "l",

 col = col, xlab = "Days", ylab = "Factor",

 ylim = c(y.min, y.max))

 lines(1:days, y.av[j,] + y.sd[j,], col = col, lty = 3)

 lines(1:days, y.av[j,] - y.sd[j,], col = col, lty = 3)

 dev.off()

 mat <- log(c(1,2,3,6,12,24,36,60,84,120,240,360))

 ### mat <- mat[-1] # Remove 1 Mo maturity

 ### mat <- mat[-12] # Remove 30 Yr maturity

 file <- paste("Weights.", j, ".", time.stamp,

 ".jpeg", sep = "")

 jpeg(file = file, width = 1800, height = 1800,

 units = "px", res = 300)

 col <- my.col[j]

 w.max <- max(w.av[, j] + 1.1 * w.sd[, j])

 w.min <- min(w.av[, j] - 1.1 * w.sd[, j])

 plot(mat, w.av[, j], type = "l",

 col = col, xlab = "Log(Maturity)",

 ylab = "Weight", ylim = c(w.min, w.max))

 lines(mat, w.av[, j] + w.sd[, j], col = col, lty = 3)

 lines(mat, w.av[, j] - w.sd[, j], col = col, lty = 3)

 dev.off()

 }

 x.fit <- w.av %*% y.av

 if(denoise)

 w <- cbind(round(w.av * 100, 2), round(w.sd * 100, 6))

 else

 w <- round(cbind(w.av, w.sd) * 100, 2)

 w <- cbind(hdr, w)

 file <- paste("w.", k, ".", n, ".", time.stamp, ".txt", sep = "")

18 Zura Kakushadze and Willie Yu

 write.table(w, file = file, quote = F,

 row.names = F, col.names = F, sep = "\t")

 r <- ss <- rep(NA, nrow(x))

 for(j in 1:nrow(x))

 {

 r[j] <- cor(x[j,], x.fit[j,])

 ss[j] <- sum((x[j,] - x.fit[j,])^2)

 }

 rss <- round(cbind(r * 100, ss), 2)

 rss <- cbind(hdr, rss)

 file <- paste("rss.", k, ".", n, ".", time.stamp,

 ".txt", sep = "")

 write.table(rss, file = file, quote = F,

 row.names = F, col.names = F, sep = "\t")

 if(denoise)

 fac <- t(rbind(lvl, y.av))

 else

 fac <- t(y.av)

 print(paste("Correlation between slope and curvature = ",

 round(cor(slope, curv) * 100, 2), sep = ""))

 print("Factor correlation matrix:")

 print(round(cor(fac) * 100, 2))

 print("Correlation matrix between factors & slope + curvature:")

 print(round(cor(fac, cbind(slope, curv)) * 100, 2))

}

Machine Learning Treasury Yields 19

Appendix B: R Source Code for Clustering Algorithm

 In this Appendix we give R source code for the clustering-based algorithms of Section 3. The

source code consist of a single function treasury.cl(k, n = 100) and is straightforward.

Internally treasury.cl() calls the R function qrm.stat.ind.class(), which is given in

Appendix A of [Kakushadze and Yu, 2016b]. This function in turn internally calls other functions, which

are also given in Appendix A of [Kakushadze and Yu, 2016b]. However, one of those functions, to wit,

qrm.calc.norm.ret(), is redefined in treasury.cl() as this function normalizes the quantities

to be clustered, and this normalization is different in the context of equities (which is the focus of

[Kakushadze and Yu, 2016b]) and in the context of Treasury yields (for which we discuss the

normalization in Section 3). The inputs of treasury.cl() are: the number of clusters k (which is

denoted by 𝐾 in the main text); and the number n of the k-means runs to aggregate (which is passed into

qrm.stat.ind.class() and is denoted by 𝑃 in the main text), which we also use as the number of

sets 𝑀 of 𝑃 k-means runs (see Section 3), i.e., we set 𝑀 = 𝑃 (even though these two parameters are

independent). The treasury.cl() function internally reads a tab-delimited text file

treasury.txt, which is described in Appendix A. The treasury.cl() function outputs two text

files, one with the weights 𝑊𝑖𝐴 within each cluster, and the other with the correlations 𝜌𝑖 and errors 𝐸𝑖

(see Subsection 2.2 for details). It also outputs JPEG files with the plots of the factors 𝐹𝐴𝑠 (these are

serial plots). Finally, it prints on-screen various quantities discussed in Section 3, such as the serial

correlation matrix between the factors, and the serial correlations between the factors and the level, the

slope and the curvature (see Section 3).

treasury.cl <- function (k, n = 100)

{

 qrm.calc.norm.ret <- function(x)

 {

 return(x / apply(x, 1, sd))

 }

 no.na <- function(x)

 {

 return(!any(x == "N/A"))

 }

 x <- read.delim("treasury.txt", header = F)

 x <- as.matrix(x)

 hdr <- x[1,]

 hdr <- hdr[-1]

 x <- x[-1,]

 d <- x[, 1]

 x <- x[, -1]

 take <- apply(x, 1, no.na)

 x <- x[take,]

 mode(x) <- "numeric"

 lvl <- x[, 10]

 slope <- x[, 10] - x[, 3]

 curv <- 2 * x[, 6] - x[, 10] - x[, 3]

 x <- t(x)

20 Zura Kakushadze and Willie Yu

 p <- matrix(NA, n, nrow(x))

 for(j in 1:n)

 {

 z <- qrm.stat.ind.class(x, k, iter.max = 100, num.try = n)

 y <- residuals(lm(x ~ z))

 p[j,] <- rowSums(y^2)

 }

 p <- t(t(p) - p[1,])

 p <- round(p, 10)

 if(sum(p > 0) > 0)

 stop("Unstable clustering, use *K-means.")

 w <- matrix(0, nrow(x), k)

 y <- matrix(0, k, ncol(x))

 for(j in 1:ncol(z))

 {

 take <- z[, j] == 1

 q <- eigen(x[take,] %*% t(x[take,]))

 w[take, j] <- sqrt(q$values[1]) * abs(q$vectors[, 1])

 q <- eigen(t(x[take,]) %*% x[take,])

 y[j,] <- abs(q$vectors[, 1])

 }

 w.n <- colSums(w)

 w <- t(t(w) / w.n)

 y <- y * w.n

 time.stamp <- paste(Sys.Date(), ".",

 format(Sys.time(), "%H%M%S"), sep = "")

 days <- ncol(y)

 my.col <- c("green", "red", "blue", "black")

 for(j in 1:nrow(y))

 {

 file <- paste("Factor.", j, ".", time.stamp, ".jpeg",

 sep = "")

 jpeg(file = file, width = 1800, height = 1800,

 units = "px", res = 300)

 col <- my.col[j]

 plot(1:days, y[j,], type = "l", col = col,

 xlab = "Days", ylab = "Factor")

 dev.off()

 }

 x.fit <- w %*% y

 w <- cbind(hdr, round(w * 100, 2))

 file <- paste("w.", k, ".", n, ".", time.stamp, ".txt", sep = "")

 write.table(w, file = file, quote = F,

 row.names = F, col.names = F, sep = "\t")

 r <- ss <- rep(NA, nrow(x))

 for(j in 1:nrow(x))

 {

 r[j] <- cor(x[j,], x.fit[j,])

 ss[j] <- sum((x[j,] - x.fit[j,])^2)

Machine Learning Treasury Yields 21

 }

 rss <- round(cbind(r * 100, ss), 2)

 rss <- cbind(hdr, rss)

 file <- paste("rss.", k, ".", n, ".", time.stamp, ".txt",

 sep = "")

 write.table(rss, file = file, quote = F,

 row.names = F, col.names = F, sep = "\t")

 fac <- t(y)

 print("Correlations between level, slope, curvature:")

 print(round(cor(cbind(lvl, slope, curv)) * 100, 2))

 print("Factor correlation matrix:")

 print(round(cor(fac) * 100, 2))

 print("Correlations between factors & level, slope, curvature:")

 print(round(cor(fac, cbind(lvl, slope, curv)) * 100, 2))

}

22 Zura Kakushadze and Willie Yu

Appendix C: R Code for One-Factor NMF vs. Rank-1 SVD Comparison

 The R function foo.nmf(n, m) in this appendix runs one-factor NMF using the R package

“NMF” [Gaujoux and Seoighe, 2010] (see Appendix A) vs. the rank-1 SVD truncation of a randomly

generated 𝑛 × 𝑚 matrix. As mentioned in the main text, one-factor NMF using said package produces

slightly (but not negligibly) worse results than the rank-1 SVD truncation.

foo.nmf <- function (n = 10, m = 20)

{

 require(NMF)

 x <- matrix(abs(rnorm(n * m, 0, 1)), n, m)

 y <- nmf(x, rank = 1, nrun = 1)

 x1 <- as.vector(basis(y)) %*% t(as.vector(coef(y)))

 q <- eigen(x %*% t(x))

 x2 <- sqrt(q$values[1]) * abs(q$vectors[, 1])

 q <- abs(eigen(t(x) %*% x)$vectors[, 1])

 x2 <- x2 %*% t(q)

 print(sum((x - x1)^2))

 print(sum((x - x2)^2))

}

Appendix D: DISCLAIMERS

 Wherever the context so requires, the masculine gender includes the feminine and/or neuter, and

the singular form includes the plural and vice-versa. The author of this paper (“Author”) and his affiliates

including without limitation Quantigic® Solutions LLC (“Author’s Affiliates” or “his Affiliates”) make

no implied or express warranties or any other representations whatsoever, including without limitation

implied warranties of merchantability and fitness for a particular purpose, in connection with or with

regard to the content of this paper including without limitation any code or algorithms contained herein

(“Content”).

 The reader may use the Content solely at his/her/its own risk and the reader shall have no claims

whatsoever against the Author or his Affiliates and the Author and his Affiliates shall have no liability

whatsoever to the reader or any third party whatsoever for any loss, expense, opportunity cost, damages

or any other adverse effects whatsoever relating to or arising from the use of the Content by the reader

including without any limitation whatsoever: any direct, indirect, incidental, special, consequential or any

other damages incurred by the reader, however caused and under any theory of liability; any loss of profit

(whether incurred directly or indirectly), any loss of goodwill or reputation, any loss of data suffered, cost

of procurement of substitute goods or services, or any other tangible or intangible loss; any reliance

placed by the reader on the completeness, accuracy or existence of the Content or any other effect of

using the Content; and any and all other adversities or negative effects the reader might encounter in

using the Content irrespective of whether the Author or his Affiliates is or are or should have been aware

of such adversities or negative effects.

 The R code included in Appendix A, Appendix B and Appendix C hereof is part of the

copyrighted R code of Quantigic® Solutions LLC and is provided herein with the express permission of

Quantigic® Solutions LLC. The copyright owner retains all rights, title and interest in and to its

copyrighted source code included in Appendix A, Appendix B and Appendix C hereof and any and all

copyrights therefor.

Machine Learning Treasury Yields 23

References

Almeida, C., Ardison, K., Kubudi, D., Simonsen, A. and Vicente, J. (2018) Forecasting Bond Yields with

Segmented Term Structure Models. Journal of Financial Econometrics 16(1): 1-33.

Bliss, R.R. (1997) Movements in the Term Structure of Interest Rates. Federal Reserve Bank of Atlanta

Economic Review 82(4): 16-33.

Bouchaud, J.-P. and Potters, M. (2011) Financial applications of random matrix theory: a short review. In:

Akemann, G., Baik, J. and Di Francesco, P. (eds.) The Oxford Handbook of Random Matrix

Theory. Oxford, United Kingdom: Oxford University Press.

Campbell, L.L. (1960) Minimum coefficient rate for stationary random processes. Information and

Control 3(4): 360-371.

Diebold, F.X. and Li, C. (2006) Forecasting the Term Structure of Government Bond Yields. Journal of

Econometrics 130(2): 337-364.

Ding, C., He, X. and Simon, H.D. (2005) On the equivalence of nonnegative matrix factorization and

spectral clustering. In: Kargupta, H., Srivastava, J., Kamath, C. and Goodman, A. (eds.)

Proceedings of the Fifth SIAM International Conference on Data Mining. Philadelphia, PA:

Society for Industrial and Applied Mathematics (SIAM), pp. 606-610.

Duffee, G. (2002) Term premia and interest rate forecasts in affine models. Journal of Finance 57(1): 405-

443.

Duffee, G. (2013) Chapter 7 – Forecasting Interest Rates. In: Elliott, G. and Timmermann, A. (eds.)

Handbook of Economic Forecasting. Vol. 2, Part A. Amsterdam, The Netherlands: Elsevier, pp.

385-426.

Eckart, C. and Young, G. (1936) The approximation of one matrix by another of lower rank.

Psychometrika 1(3): 211-218.

Fama, E.F. and MacBeth, J.D. (1973) Risk, Return and Equilibrium: Empirical Tests. Journal of Political

Economy 81(3): 607-636.

Forgy, E.W. (1965) Cluster analysis of multivariate data: efficiency versus interpretability of

classifications. Biometrics 21(3): 768-769.

Frobenius, G. (1912) Über Matrizen aus Nicht Negativen Elementen. In: Sitzungsberichte der Königlich

Preussischen Akademie der Wissenschaften zu Berlin, pp. 456-477.

Gaujoux, R. and Seoighe, C. (2010). A flexible R package for nonnegative matrix factorization. BMC

Bioinformatics 11: 367.

Hartigan, J.A. (1975) Clustering Algorithms. New York, NY: John Wiley & Sons, Inc.

Hartigan, J.A. and Wong, M.A. (1979) Algorithm AS 136: A K-Means Clustering Algorithm. Journal of

the Royal Statistical Society, Series C (Applied Statistics) 28(1): 100-108.

Kakushadze, Z. (2015) Heterotic Risk Models. Wilmott Magazine 2015(80): 40-55. Available online:

https://ssrn.com/abstract=2600798.

Kakushadze, Z. and Yu, W. (2016a) Factor Models for Cancer Signatures. Physica A 462: 527-559.

Available online: https://ssrn.com/abstract=2772458.

Kakushadze, Z. and Yu, W. (2016b) Statistical Industry Classification. Journal of Risk & Control 3(1):

17-65. Available online: https://ssrn.com/abstract=2802753.

Kakushadze, Z. and Yu, W. (2017a) Statistical Risk Models. Journal of Investment Strategies 6(2): 1-40.

Available online: https://ssrn.com/abstract=2732453.

Kakushadze, Z. and Yu, W. (2017b) *K-means and Cluster Models for Cancer Signatures. Biomolecular

Detection and Quantification 13: 7-31. Available online: https://ssrn.com/abstract=2908286.

Kakushadze, Z. and Yu, W. (2017c) Mutation Clusters from Cancer Exome. Genes 8(8): 201. Available

online: https://ssrn.com/abstract=2945010.

Knez, P., Litterman, R.B. and Scheinkman, J. (1994) Explorations into Factors Explaining Money Market

Returns. Journal of Finance 49(5): 1861-1882.

Lee, D.D. and Seung, H.S. (1999) Learning the parts of objects by non-negative matrix factorization.

Nature 401(6755): 788-791.

https://ssrn.com/abstract=2600798
https://ssrn.com/abstract=2772458
https://ssrn.com/abstract=2802753
https://ssrn.com/abstract=2732453
https://ssrn.com/abstract=2908286
https://ssrn.com/abstract=2945010

24 Zura Kakushadze and Willie Yu

Litterman, R.B. and Scheinkman, J. (1991) Common factors affecting bond returns. Journal of Fixed

Income 1(1): 54-61.

Lloyd, S.P. (1957) Least square quantization in PCM. Working Paper. Murray Hill, NJ: Bell Telephone

Laboratories.

Lloyd, S.P. (1982) Least square quantization in PCM. IEEE Transactions on Information Theory 28(2):

129-137.

MacQueen, J.B. (1967) Some Methods for classification and Analysis of Multivariate Observations. In:

LeCam, L. and Neyman, J. (eds.) Proceedings of the 5th Berkeley Symposium on Mathematical

Statistics and Probability. Berkeley, CA: University of California Press, pp. 281-297.

Nelson, C. and Siegel, A.F. (1987) Parsimonious modeling of yield curves. Journal of Business 60(4):

473-489.

Paatero, P. and Tapper, U. (1994) Positive matrix factorization: A non-negative factor model with optimal

utilization of error. Environmetrics 5(1): 111-126.

Perron, O. (1907) Zur Theorie der Matrices. Mathematische Annalen 64(2): 248-263.

Roy, O. and Vetterli, M. (2007) The effective rank: A measure of effective dimensionality. In: European

Signal Processing Conference (EUSIPCO). Poznań, Poland (September 3-7, 2007), pp. 606-610.

Shahnaz, F., Berry, M.W., Pauca, V.P. and Plemmons, R.J. (2006) Document clustering using

nonnegative matrix factorization. Information Processing and Management 42(2): 373-386.

Steinhaus, H. (1957) Sur la division des corps matériels en parties. Bull. Acad. Polon. Sci. 4(12): 801-

804.

Svensson, L.E.O. (1994) Estimating and interpreting forward interest rates: Sweden 1992-1994. NBER

Working Paper No. 4871. Cambridge, MA: National Bureau of Economic Research.

Takada, H. H. and Stern, J.M. (2015) Non-negative matrix factorization and term structure of interest

rates. AIP Conference Proceedings 1641(1): 369-377.

Yang, W., Gibson, J.D. and He, T. (2005) Coefficient rate and lossy source coding. IEEE Transactions on

Information Theory 51(1): 381-386.

Zass, R. and Shashua, A. (2005) A unifying approach to hard and probabilistic clustering. In: Proceedings

of the Tenth IEEE International Conference on Computer Vision (ICCV’05). Washington, DC:

IEEE Computer Society, pp. 294-301.

Machine Learning Treasury Yields 25

Table 1: The weights matrix 𝑊𝑖𝐴 (in %, rounded to 2 decimals) averaged over 𝑃 = 100 vanilla NMF

runs for 𝐾 = 2. W1 and W2 correspond to the first and second columns of 𝑊𝑖𝐴. SD1 and SD2 are the

corresponding standard deviations. W1 and W2 are plotted against the log of the maturity in Figures 3

and 4. When clustering the columns of the matrix 𝑊̂ (whose dimension in this case is 12 × 200 – see

Section 2), we get 2 batches with 𝑃1 = 𝑃2 = 100 elements in each.

Maturity W1 W2 SD1 SD2
1 Mo 12.2 4.27 2.16 1.73

2 Mo 11.8 4.69 1.95 1.56

3 Mo 11.32 5.12 1.7 1.36

6 Mo 10.27 6.26 1.09 0.88

1 Yr 8.24 7.95 0.08 0.06

2 Yr 5.86 9.7 1.05 0.84

3 Yr 5.15 10.17 1.37 1.1

5 Yr 5.02 10.41 1.47 1.18

7 Yr 5.55 10.54 1.36 1.09

10 Yr 6.15 10.66 1.23 0.99

20 Yr 8.39 10.27 0.51 0.41

30 Yr 10.04 9.96 0.02 0.02

Table 2: The fit measures for the same NMF runs as in Table 1. See Subsection 2.2 for the definitions of

𝜌𝑖 and 𝐸𝑖. All values are rounded to 2 decimals. In this and other tables below, 𝜌𝑖 are expressed in %,

while 𝐸𝑖 are the actual values of the errors (not in %).

Maturity Correlations 𝜌𝑖 Errors 𝐸𝑖
1 Mo 98.11 0.71

2 Mo 98.8 0.51

3 Mo 99.12 0.48

6 Mo 99.68 0.45

1 Yr 99.23 0.86

2 Yr 99.55 0.56

3 Yr 99.69 0.47

5 Yr 99.81 0.35

7 Yr 99.89 0.27

10 Yr 99.81 0.4

20 Yr 99.21 1.37

30 Yr 98.3 2.38

26 Zura Kakushadze and Willie Yu

Table 3: The weights matrix 𝑊𝑖𝐴 (in %, rounded to 2 decimals) averaged over 𝑃 = 100 vanilla NMF

runs for 𝐾 = 3. W1, W2 and W3 correspond to the first, second and third columns of 𝑊𝑖𝐴. SD1, SD2

and SD3 are the corresponding standard deviations. W1, W2 and W3 are plotted against the log of the

maturity in Figures 8, 9 and 10. When clustering the columns of the matrix 𝑊̂ (whose dimension in this

case is 12 × 300 – see Section 2), we get 3 batches with nonuniform numbers of elements 𝑃𝐴 in each

batch, which vary from one set of 𝑃 = 100 runs to another. For the set reported in this table we have

𝑃1 = 91, 𝑃2 = 97 and 𝑃3 = 112. As mentioned in Section 2, this is indicative of instability for 𝐾 = 3

(owing to the “overall mode”).

Maturity W1 W2 W3 SD1 SD2 SD3
1 Mo 13.63 8.47 3.32 1.71 1.39 1.56

2 Mo 13.01 8.45 3.89 1.73 1.54 1.48

3 Mo 12.43 8.44 4.37 1.49 1.17 1.31

6 Mo 11.04 8.49 5.61 1.72 1.37 1.33

1 Yr 8.5 8.26 7.59 1.88 1.81 1.74

2 Yr 5.23 7.93 9.89 1.67 1.81 1.58

3 Yr 4.4 7.64 10.58 1.44 1.66 1.52

5 Yr 4.31 7.49 10.99 1.92 1.69 1.41

7 Yr 4.66 7.89 11.15 1.27 1.29 1.08

10 Yr 5.38 8.03 11.37 1.47 1.37 1.4

20 Yr 7.77 9.09 10.84 2.42 2.53 2.43

30 Yr 9.64 9.83 10.39 3.19 3.15 2.88

Table 4: The fit measures for the same NMF runs as in Table 3. See Subsection 2.2 for the definitions of

𝜌𝑖 and 𝐸𝑖. All values are rounded to 2 decimals.

Maturity Correlations 𝜌𝑖 Errors 𝐸𝑖
1 Mo 99.27 2.7

2 Mo 99.62 2.03

3 Mo 99.49 1.81

6 Mo 99.42 1.24

1 Yr 99.24 1.7

2 Yr 99.62 1.93

3 Yr 99.76 2.17

5 Yr 99.92 1.92

7 Yr 99.91 1.88

10 Yr 99.79 1.83

20 Yr 98.65 1.86

30 Yr 97.77 2.45

Machine Learning Treasury Yields 27

Table 5: The weights matrix 𝑊𝑖𝐴 (in %, rounded to 2 decimals) averaged over 𝑃 = 100 de-noised NMF runs

for 𝐾 = 2. W1 and W2 correspond to the first and second columns of 𝑊𝑖𝐴. SD1 and SD2 (also in % but

rounded to 6 decimals) are the corresponding standard deviations. W1 and W2 are plotted against the log of

the maturity in Figures 13 and 14. When clustering the columns of the matrix 𝑊̂ (whose dimension in this

case is 12 × 200 – see Section 2), we get 2 batches with 𝑃1 = 𝑃2 = 100 elements in each.

Maturity W1 W2 SD1 SD2
1 Mo 0 12.17 0 0.000145

2 Mo 0.8 11.82 5.1e-05 0.000135

3 Mo 1.44 11.09 3.3e-05 0.000114

6 Mo 3.95 10.12 2e-05 7.1e-05

1 Yr 6.32 6.29 1.8e-05 2e-05

2 Yr 7.38 1.43 7.4e-05 0.000146

3 Yr 7.16 0.16 0.000138 0.000228

5 Yr 8.26 0 9.1e-05 0

7 Yr 10.83 2.86 2.8e-05 7.6e-05

10 Yr 13.42 6.11 4.1e-05 4.6e-05

20 Yr 18.47 15.54 3.5e-05 7e-06

30 Yr 21.98 22.41 4.7e-05 5.5e-05

Table 6: The fit measures for the same NMF runs as in Table 5 for the de-noised matrix 𝑍𝑖𝑠. See

Subsection 2.2 for the definitions of 𝜌𝑖 and 𝐸𝑖. All values are rounded to 2 decimals.

Maturity Correlations 𝜌𝑖 Errors 𝐸𝑖
1 Mo 96.48 0.92

2 Mo 97.15 0.67

3 Mo 96.51 0.75

6 Mo 95.22 0.5

1 Yr 91.31 0.83

2 Yr 97.53 1.07

3 Yr 97.38 1.92

5 Yr 97.43 1.47

7 Yr 98.95 0.47

10 Yr 98.17 0.58

20 Yr 92.97 4.85

30 Yr 88.95 11.75

28 Zura Kakushadze and Willie Yu

Table 7. The weights matrix 𝑊𝑖𝐴 (in %, rounded to 2 decimals) averaged over 𝑃 = 100 de-noised NMF

runs for 𝐾 = 3. W1, W2 and W3 correspond to the first, second and third columns of 𝑊𝑖𝐴. SD1, SD2

and SD3 (also in % but rounded to 6 decimals) are the corresponding standard deviations. W1, W2 and

W3 are plotted against the log of the maturity in Figures 18, 19 and 20. When clustering the columns of

the matrix 𝑊̂ (whose dimension in this case is 12 × 300 – see Section 2), we get 3 batches with 𝑃1 =

𝑃2 = 𝑃3 = 100 elements in each.

Maturity W1 W2 W3 SD1 SD2 SD3
1 Mo 17.17 0 0 0.518361 0 0

2 Mo 16.78 1.28 0.02 0.507747 0.223593 0.005382

3 Mo 15.83 2.34 0 0.477415 0.41493 0

6 Mo 13.13 4.66 2.94 0.3091 0.306576 0.00226

1 Yr 7.91 8.42 3.11 0.146807 0.942744 0.00286

2 Yr 1.84 11.73 1.23 0.020332 1.865025 0.003985

3 Yr 0 12.92 0 0 2.29633 0

5 Yr 0 12.59 1.61 0 1.932447 0.05651

7 Yr 1.28 12.65 7.79 0.192364 0.861373 0.004615

10 Yr 2.7 12.3 14.7 0.402724 0.424659 0.039581

20 Yr 9.37 11.1 29.01 0.599507 3.177687 0.012721

30 Yr 13.99 10.01 39.59 0.785305 5.240601 0.025809

Table 8: The fit measures for the same NMF runs as in Table 7 for the de-noised matrix 𝑍𝑖𝑠. See

Subsection 2.2 for the definitions of 𝜌𝑖 and 𝐸𝑖. All values are rounded to 2 decimals.

Maturity Correlations 𝜌𝑖 Errors 𝐸𝑖
1 Mo 99.35 0.15

2 Mo 99.35 0.13

3 Mo 99.06 0.16

6 Mo 97.47 0.23

1 Yr 93.99 0.58

2 Yr 99.64 0.11

3 Yr 99.87 0.07

5 Yr 99.6 0.13

7 Yr 99.6 0.13

10 Yr 99.65 0.12

20 Yr 99.24 0.18

30 Yr 97.41 0.43

Machine Learning Treasury Yields 29

Table 9: Correlations 𝜑𝐴𝐵 and 𝜗𝐴 (in %) for 𝐾 = 3 across 5 different sets of 𝑃 = 100 de-noised NMF

runs (see Subsection 2.3 for details). The factors are in the same order as in Table 7 for sets 1-3 as for

these sets the ordering is evident from the 𝜗1, 𝜗2 and 𝜑12 correlations (and the first set is the same as in

Table 7). However, for sets 4 and 5 the factors are not ordered in any way as no ordering is evident from

the correlations.

Set 𝜗1 𝜗2 𝜗3 𝜑12 𝜑13 𝜑23

1 -69.92 34.25 48.28 -48.23 -72.25 18.18

2 -69.92 34.25 41.63 -48.23 -62.97 -3.22

3 -69.91 34.26 45.72 -48.24 -68.73 9.83

4 22.75 55.38 -10.95 42.99 -75.22 12.18

5 -11.73 55.39 24.75 17.12 -73.07 40.88

Table 10: The weights matrix 𝑊𝑖𝐴 (in %, rounded to 2 decimals) averaged over 𝑃 = 100 NMF runs for

𝐾 = 2 with alternative de-noising (see Subsection 2.5). W1 and W2 correspond to the first and second

columns of 𝑊𝑖𝐴. SD1 and SD2 (also in % but rounded to 6 decimals) are the corresponding standard

deviations. W1 and W2 are plotted against the log of the maturity in Figures 23 and 24. When clustering

the columns of the matrix 𝑊̂ (whose dimension in this case is 12 × 200 – see Section 2), we get 2

batches with 𝑃1 = 𝑃2 = 100 elements in each.

Maturity W1 W2 SD1 SD2
1 Mo 18.12 0 0.014807 0

2 Mo 16.8 1.24 0.012012 0.002196

3 Mo 16.01 2.2 0.010738 0.001476

6 Mo 13.25 4.36 0.006912 0.00078

1 Yr 9.87 9.16 0.000512 9.9e-05

2 Yr 6.79 15.13 0.006556 0.000659

3 Yr 5.96 17.05 0.008713 0.000885

5 Yr 5.29 17.2 0.009404 0.000932

7 Yr 4.03 15.16 0.008822 0.000858

10 Yr 2.82 12.8 0.007872 0.000784

20 Yr 1.07 5.56 0.003543 0.000352

30 Yr 0 0.14 0 0.000135

30 Zura Kakushadze and Willie Yu

Table 11: The fit measures for the same NMF runs as in Table 10 for the matrix 𝑍̃𝑖𝑠 with alternative de-

noising (see Subsection 2.5). See Subsection 2.2 for the definitions of 𝜌𝑖 and 𝐸𝑖. All values are rounded

to 2 decimals.

Maturity Correlations 𝜌𝑖 Errors 𝐸𝑖
1 Mo 99.63 0.18

2 Mo 99.76 0.1

3 Mo 99.57 0.14

6 Mo 98.94 0.2

1 Yr 94.91 0.55

2 Yr 97.25 0.2

3 Yr 98.18 0.14

5 Yr 99.32 0.06

7 Yr 99.23 0.06

10 Yr 97.6 0.14

20 Yr 92.7 0.09

30 Yr 28.63 0.09

Table 12: Sample data from the treasuty.txt file (see Appendix A).

Date 1 Mo 2 Mo 3 Mo 6 Mo 1 Yr 2 Yr 3 Yr 5 Yr 7 Yr 10 Yr 20 Yr 30 Yr

10/25/19 1.73 1.72 1.66 1.66 1.60 1.63 1.62 1.62 1.71 1.80 2.10 2.29

10/28/19 1.74 1.71 1.65 1.65 1.60 1.64 1.65 1.66 1.75 1.85 2.16 2.34

10/29/19 1.66 1.67 1.63 1.64 1.59 1.64 1.65 1.66 1.74 1.84 2.15 2.33

10/30/19 1.61 1.60 1.62 1.62 1.59 1.61 1.60 1.61 1.69 1.78 2.08 2.26

10/31/19 1.59 1.59 1.54 1.57 1.53 1.52 1.52 1.51 1.60 1.69 2.00 2.17

11/01/19 1.58 1.58 1.52 1.55 1.53 1.56 1.55 1.55 1.63 1.73 2.03 2.21

11/04/19 1.58 1.57 1.53 1.57 1.56 1.60 1.59 1.60 1.69 1.79 2.10 2.27

11/05/19 1.56 1.57 1.56 1.58 1.62 1.63 1.63 1.66 1.77 1.86 2.17 2.34

11/06/19 1.55 1.56 1.56 1.57 1.58 1.61 1.60 1.63 1.73 1.81 2.13 2.30

11/07/19 1.57 1.57 1.56 1.58 1.58 1.68 1.70 1.74 1.84 1.92 2.24 2.40

11/08/19 1.56 1.56 1.55 1.58 1.58 1.68 1.70 1.74 1.86 1.94 2.27 2.43

11/12/19 1.56 1.56 1.59 1.59 1.58 1.66 1.69 1.73 1.84 1.92 2.24 2.39

11/13/19 1.56 1.57 1.57 1.59 1.57 1.63 1.65 1.69 1.79 1.88 2.20 2.36

11/14/19 1.59 1.57 1.57 1.58 1.55 1.58 1.59 1.63 1.73 1.82 2.15 2.31

11/15/19 1.59 1.56 1.57 1.59 1.54 1.61 1.61 1.65 1.75 1.84 2.16 2.31

11/18/19 1.59 1.57 1.57 1.58 1.54 1.60 1.59 1.63 1.73 1.81 2.14 2.30

11/19/19 1.58 1.57 1.57 1.58 1.54 1.60 1.59 1.63 1.71 1.79 2.11 2.26

11/20/19 1.57 1.56 1.57 1.58 1.54 1.56 1.55 1.58 1.66 1.73 2.05 2.20

11/21/19 1.57 1.57 1.58 1.59 1.55 1.60 1.59 1.62 1.71 1.77 2.09 2.24

11/22/19 1.58 1.59 1.58 1.59 1.56 1.61 1.60 1.62 1.71 1.77 2.08 2.22

Machine Learning Treasury Yields 31

Table 13: The weights matrix 𝑊𝑖𝐴 (in %, rounded to 2 decimals) using the statistical clustering approach of

Section 3 for 𝐾 = 2 clusters. The clustering was determined using 100 sets of 100 k-means runs (see Section

3) and was 100% stable from set to set. W1 and W2 correspond to the first and second columns of 𝑊𝑖𝐴.

Maturity W1 W2
1 Mo 24.82 0

2 Mo 24.93 0

3 Mo 24.94 0

6 Mo 25.3 0

1 Yr 0 11.9

2 Yr 0 11.67

3 Yr 0 11.57

5 Yr 0 11.67

7 Yr 0 12.13

10 Yr 0 12.63

20 Yr 0 13.79

30 Yr 0 14.64

Table 14: The fit measures for the clustering runs in Table 13. See Subsection 2.2 for the definitions of

𝜌𝑖 and 𝐸𝑖. All values are rounded to 2 decimals.

Maturity Correlations 𝜌𝑖 Errors 𝐸𝑖
1 Mo 98.26 0.82

2 Mo 99.55 0.22

3 Mo 99.79 0.1

6 Mo 98.04 1.48

1 Yr 96.91 3.32

2 Yr 99.61 0.88

3 Yr 99.64 1.66

5 Yr 99.79 1.78

7 Yr 99.85 1.06

10 Yr 99.87 0.58

20 Yr 99.57 1.5

30 Yr 99.18 4.99

32 Zura Kakushadze and Willie Yu

Table 15: The weights matrix 𝑊𝑖𝐴 (in %, rounded to 2 decimals) using the statistical clustering approach

of Section 3 for 𝐾 = 3 clusters. The clustering was determined using 100 sets of 100 k-means runs (see

Section 3) and was 100% stable from set to set. W1, W2 and W3 correspond to the first, second and third

columns of 𝑊𝑖𝐴.

Maturity W1 W2 W3
1 Mo 33.23 0 0

2 Mo 33.38 0 0

3 Mo 33.39 0 0

6 Mo 0 31.03 0

1 Yr 0 30.93 0

2 Yr 0 0 15.89

3 Yr 0 0 15.76

5 Yr 0 0 15.89

7 Yr 0 0 16.51

10 Yr 0 0 17.19

20 Yr 0 0 18.76

30 Yr 0 38.04 0

Table 16: The fit measures for the clustering runs in Table 15. See Subsection 2.2 for the definitions of

𝜌𝑖 and 𝐸𝑖. All values are rounded to 2 decimals.

Maturity Correlations 𝜌𝑖 Errors 𝐸𝑖
1 Mo 99.33 0.29

2 Mo 99.9 0.04

3 Mo 99.42 0.3

6 Mo 96.77 2.12

1 Yr 99.33 1.31

2 Yr 99.59 0.5

3 Yr 99.79 0.63

5 Yr 99.94 0.6

7 Yr 99.97 0.2

10 Yr 99.89 0.15

20 Yr 99.53 3.18

30 Yr 97.74 2.22

Machine Learning Treasury Yields 33

Figure 1: The time series plot for the first row of the factors matrix 𝐹𝐴𝑠 corresponding to the weights W1 in Table

1. The solid line is the mean over 𝑃 = 100 runs, while the dashed lines correspond to one standard deviation from

the mean in each direction.

34 Zura Kakushadze and Willie Yu

Figure 2: The time series plot for the second row of the factors matrix 𝐹𝐴𝑠 corresponding to the weights W2 in

Table 1. The solid line is the mean over 𝑃 = 100 runs, while the dashed lines correspond to one standard deviation

from the mean in each direction.

Machine Learning Treasury Yields 35

Figure 3: The weights W1 in Table 1 plotted against the natural log of the maturity. The solid line is the mean over

𝑃 = 100 runs, while the dashed lines correspond to one standard deviation from the mean in each direction.

36 Zura Kakushadze and Willie Yu

Figure 4: The weights W2 in Table 1 plotted against the natural log of the maturity. The solid line is the mean over

𝑃 = 100 runs, while the dashed lines correspond to one standard deviation from the mean in each direction.

Machine Learning Treasury Yields 37

Figure 5: The time series plot for the first row of the factors matrix 𝐹𝐴𝑠 corresponding to the weights W1 in Table

3. The solid line is the mean over 𝑃 = 100 runs, while the dashed lines correspond to one standard deviation from

the mean in each direction.

38 Zura Kakushadze and Willie Yu

Figure 6: The time series plot for the second row of the factors matrix 𝐹𝐴𝑠 corresponding to the weights W2 in

Table 3. The solid line is the mean over 𝑃 = 100 runs, while the dashed lines correspond to one standard deviation

from the mean in each direction.

Machine Learning Treasury Yields 39

Figure 7: The time series plot for the third row of the factors matrix 𝐹𝐴𝑠 corresponding to the weights W3 in Table

3. The solid line is the mean over 𝑃 = 100 runs, while the dashed lines correspond to one standard deviation from

the mean in each direction.

40 Zura Kakushadze and Willie Yu

Figure 8: The weights W1 in Table 3 plotted against the natural log of the maturity. The solid line is the mean over

𝑃 = 100 runs, while the dashed lines correspond to one standard deviation from the mean in each direction.

Machine Learning Treasury Yields 41

Figure 9: The weights W2 in Table 3 plotted against the natural log of the maturity. The solid line is the mean over

𝑃 = 100 runs, while the dashed lines correspond to one standard deviation from the mean in each direction.

42 Zura Kakushadze and Willie Yu

Figure 10: The weights W3 in Table 3 plotted against the natural log of the maturity. The solid line is the mean

over 𝑃 = 100 runs, while the dashed lines correspond to one standard deviation from the mean in each direction.

Machine Learning Treasury Yields 43

Figure 11: The time series plot for the first row of the factors matrix 𝐹𝐴𝑠 corresponding to the weights W1 in Table

5. The solid line is the mean over 𝑃 = 100 runs. The dashed lines corresponding to one standard deviation from

the mean in each direction are also included but are not visible in this graph as the errors are tiny (see Table 5).

44 Zura Kakushadze and Willie Yu

Figure 12: The time series plot for the second row of the factors matrix 𝐹𝐴𝑠 corresponding to the weights W2 in

Table 5. The solid line is the mean over 𝑃 = 100 runs. The dashed lines corresponding to one standard deviation

from the mean in each direction are also included but are not visible in this graph as the errors are tiny (see Table 5).

Machine Learning Treasury Yields 45

Figure 13: The weights W1 in Table 5 plotted against the natural log of the maturity. The solid line is the mean

over 𝑃 = 100 runs. The dashed lines corresponding to one standard deviation from the mean in each direction are

also included but are not visible in this graph as the errors are tiny (see Table 5).

46 Zura Kakushadze and Willie Yu

Figure 14: The weights W2 in Table 5 plotted against the natural log of the maturity. The solid line is the mean

over 𝑃 = 100 runs. The dashed lines corresponding to one standard deviation from the mean in each direction are

also included but are not visible in this graph as the errors are tiny (see Table 5).

Machine Learning Treasury Yields 47

Figure 15: The time series plot for the first row of the factors matrix 𝐹𝐴𝑠 corresponding to the weights W1 in Table

7. The solid line is the mean over 𝑃 = 100 runs. The dashed lines corresponding to one standard deviation from

the mean in each direction are also included but are mostly not visible in this graph as the errors are relatively small.

48 Zura Kakushadze and Willie Yu

Figure 16: The time series plot for the second row of the factors matrix 𝐹𝐴𝑠 corresponding to the weights W2 in

Table 7. The solid line is the mean over 𝑃 = 100 runs. The dashed lines corresponding to one standard deviation

from the mean in each direction are also included but are not visible in parts of this graph as the corresponding

errors are relatively small; the errors are sizable in the beginning of the period shown.

Machine Learning Treasury Yields 49

Figure 17: The time series plot for the third row of the factors matrix 𝐹𝐴𝑠 corresponding to the weights W3 in Table

7. The solid line is the mean over 𝑃 = 100 runs. The dashed lines corresponding to one standard deviation from

the mean in each direction are also included but are not visible in parts of this graph as the corresponding errors are

relatively small; the errors are sizable in the beginning of the period shown.

50 Zura Kakushadze and Willie Yu

Figure 18: The weights W1 in Table 7 plotted against the natural log of the maturity. The solid line is the mean

over 𝑃 = 100 runs. The dashed lines correspond to one standard deviation from the mean in each direction.

Machine Learning Treasury Yields 51

Figure 19: The weights W2 in Table 7 plotted against the natural log of the maturity. The solid line is the mean

over 𝑃 = 100 runs. The dashed lines correspond to one standard deviation from the mean in each direction.

52 Zura Kakushadze and Willie Yu

Figure 20: The weights W3 in Table 7 plotted against the natural log of the maturity. The solid line is the mean

over 𝑃 = 100 runs. The dashed lines corresponding to one standard deviation from the mean in each direction are

also included but are not visible in this graph as the errors are relatively small (see Table 7).

Machine Learning Treasury Yields 53

Figure 21: The time series plot for the first row of the factors matrix 𝐹𝐴𝑠 corresponding to the weights W1 in Table

10. The solid line is the mean over 𝑃 = 100 runs. The dashed lines corresponding to one standard deviation from

the mean in each direction are also included but are not visible in this graph as the errors are tiny (see Table 10).

54 Zura Kakushadze and Willie Yu

Figure 22: The time series plot for the second row of the factors matrix 𝐹𝐴𝑠 corresponding to the weights W2 in Table 10.

The solid line is the mean over 𝑃 = 100 runs. The dashed lines corresponding to one standard deviation from the mean in

each direction are also included but are not visible in this graph as the errors are tiny (see Table 10).

Machine Learning Treasury Yields 55

Figure 23: The weights W1 in Table 10 plotted against the natural log of the maturity. The solid line is the mean

over 𝑃 = 100 runs. The dashed lines corresponding to one standard deviation from the mean in each direction are

also included but are not visible in this graph as the errors are tiny (see Table 10).

56 Zura Kakushadze and Willie Yu

Figure 24: The weights W2 in Table 10 plotted against the natural log of the maturity. The solid line is the mean

over 𝑃 = 100 runs. The dashed lines corresponding to one standard deviation from the mean in each direction are

also included but are not visible in this graph as the errors are tiny (see Table 10).

Machine Learning Treasury Yields 57

Figure 25: The time series plot for the first row of the factors matrix 𝐹𝐴𝑠 corresponding to the weights W1 in Table 13.

58 Zura Kakushadze and Willie Yu

Figure 26: The time series plot for the second row of the factors matrix 𝐹𝐴𝑠 corresponding to the weights W2 in

Table 13.

Machine Learning Treasury Yields 59

Figure 27: The time series plot for the first row of the factors matrix 𝐹𝐴𝑠 corresponding to the weights W1 in Table 15.

60 Zura Kakushadze and Willie Yu

Figure 28: The time series plot for the second row of the factors matrix 𝐹𝐴𝑠 corresponding to the weights W2 in

Table 15.

Machine Learning Treasury Yields 61

Figure 29: The time series plot for the third row of the factors matrix 𝐹𝐴𝑠 corresponding to the weights W3 in Table 15.

62 Zura Kakushadze and Willie Yu

Figure 30: The first-cluster weights 𝑊𝑖1 (𝑖 = 1, … ,4, which correspond to the maturities 1 Mo, 2 Mo, 3 Mo and 6

Mo) in the 𝐾 = 2 cluster model (see Subsection 3.1) computed based on thirteen 21-trading-day periods (as opposed

to the 276-trading-day period as in Table 13).

Machine Learning Treasury Yields 63

Figure 31: The second-cluster weights 𝑊𝑖2 (𝑖 = 5, … ,12, which correspond to the maturities 1 Yr, 2 Yr, 3 Yr, 5 Yr,

7 Yr, 10 Yr, 20 Yr and 30 Yr) in the 𝐾 = 2 cluster model (see Subsection 3.1) computed based on thirteen 21-

trading-day periods (as opposed to the 276-trading-day period as in Table 13).

64 Zura Kakushadze and Willie Yu

Figure 32: The first-cluster weights 𝑊𝑖1 (𝑖 = 1, … ,4, which correspond to the maturities 1 Mo, 2 Mo, 3 Mo and 6

Mo) in the 𝐾 = 2 cluster model (see Subsection 3.1) computed on each trading day (as opposed to the 276-trading-

day period as in Table 13).

Machine Learning Treasury Yields 65

Figure 33: The second-cluster weights 𝑊𝑖2 (𝑖 = 5, … ,12, which correspond to the maturities 1 Yr, 2 Yr, 3 Yr, 5 Yr,

7 Yr, 10 Yr, 20 Yr and 30 Yr) in the 𝐾 = 2 cluster model (see Subsection 3.1) computed on each trading day (as

opposed to the 276-trading-day period as in Table 13).

