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On the Heteroskedastic-Autoregressive

Specification of the Linear Regression Model
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Abstract

In this paper we examine, from a theoretical viewpoint, the gen-
eralized normal linear regression model with disturbances that are si-
multaneously heteroskedastic and autoregressive. In particular, the
error specification of the model is a mixture of Amemiya’s linear het-
eroskedasticity structure with a stationary first-order autoregressive
process. Given that the heteroskedastic variances are functions of
the first-order autocorrelation coefficient, the estimators used in ap-
plied research cannot properly distinguish the estimations of the het-
eroskedastic and autoregressive parameters of the model. To avoid
this problem, we introduce a multi-step estimation procedure, which
has mainly theoretical interest, and is not suggested as an alternative
to the well-known heteroskedasticity and autocorrelation consistent es-
timation used in applied econometric research. This estimation proce-
dure facilitates the derivation of two distinct, theoretically important,
generalized linear models, one with heteroskedastic and another with
first-order autoregressive error terms. These two distinct models can be
used for the theoretical examination of the finite-sample distributional
properties of the estimators of the heteroskedastic and autoregressive
parameters.
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1 Introduction

Most of the single-equation econometric specifications in applied research can
be expressed in the form of the generalized normal linear regression model,
provided that certain assumptions are made about the structure of the dis-
turbance covariance matrix. Some of the disturbance specifications, most
frequently used in applied econometrics, are the AR(1), the heteroskedastic,
and the seemingly-unrelated-regressions structures of the error terms. This
fact explains the volume of the theoretical and applied work published in
those areas. Also, due to the need to cope with more complex economic
phenomena, in many cases, econometricians have brought into focus models
with random errors which are generated by a mixture of various distur-
bance specifications, such as models of seemingly unrelated regressions with
autocorrelated errors (see, e.g., Symeonides et al. (2016)), or models with
mixed heteroskedastic-autoregressive disturbances, which can be estimated
by using the heteroskedasticity consistent (HC) and the heteroskedasticity-
autocorrelation consistent (HAC) estimators of the error covariance matrix
(see, inter alia, White (1980), MacKinnon and White (1985), and Newey
and West (1987)).

This paper is concerned with the theoretical investigation of the nor-
mal linear regression model in which the disturbances are specified as a
mixed heteroskedastic-autoregressive process. In particular, we examine the
mixture of a stationary first-order autoregressive process with autocorre-
lation coefficient p, and a linear heteroskedastic specification of the form
var(u;) = 2.6 (t = 1,...,T), where ¢ is a vector of heteroskedasticity
parameters (Amemiya 1977).

From the viewpoint of theoretical econometrics, a lot of effort has been
devoted, up till now, to the construction of estimators of ¢ and p in economet-
ric models with error terms that are either heteroskedastic or autoregressive.
Thus, in the linear model with heteroskedastic variances var(us) = z/.¢ (t =
1,...,T), some of the most frequently used estimators of ¢, described in Sub-
section 3.1, are the least squares or Goldfeld-Quandt estimator, the general-
ized least squares or Amemiya estimator, the iterative Amemiya estimator,
and the maximum likelihood estimator. Moreover, in the linear model with
AR(1) errors, some of the most frequently used estimators of p, described
in Subsection 3.2, are the least squares estimator, the Durbin-Watson esti-
mator, the generalized least squares estimator, the Prais-Winsten estimator,
and the maximum likelihood estimator.

However, although there are many estimators of ¢ and p in models with
exclusively heteroskedastic or exclusively autoregressive disturbances, re-
spectively, according to our knowledge, no procedure has ever been proposed
for how the parameters ¢ and p should be estimated in order to facilitate
the theoretical investigation of linear models with a mixed heteroskedastic-
autoregressive specification of disturbances. Our purpose, in this paper, is to



derive such an estimation procedure. In order to do so, we introduce a repa-
rameterization of the model, which can distinguish the two problems, i.e.,
heteroskedasticity and autocorrelation, simultaneously present in the error
terms.

When a linear heteroskedastic specification is combined with a station-
ary first-order autoregressive process in order to generate the disturbances
in a generalized normal linear regression model, the heteroskedastic vari-
ances, var(uy) = 07 /(1 — p?), are functions of the first-order autocorrelation
coefficient, p. Because of this, the use of standard estimators results in es-
timated heteroskedasticity parameters which are functions of the first-order
autocorrelation coefficient. This means that, although the parameters ¢ and
p are identified from a theoretical point of view, they cannot be properly
distinguished by any of the estimators ¢ and p used in applied research.

To account for this problem, we introduce a reparameterization of the
model, in which the heteroskedasticity parameter vector is ¢, = (1 — p?)/2.
The use of this alternative parameterization results in a multi-step estima-
tion procedure that enables us to effectively distinguish, from a theoretical
viewpoint, the estimation of the heteroskedasticity parameters from the es-
timation of the first-order autocorrelation coefficient. Such a distinction is
extremely useful whenever the researcher wants to construct an adjusted gen-
eralized linear model with disturbances that are exclusively heteroskedastic
or exclusively autoregressive, in order to theoretically examine certain dis-
tributional properties of the estimators of ¢ and p, respectively.

The structure of this paper is as follows: The model and some nota-
tional conventions are presented in Section 2. In particular, Subsection 2.1
describes the AR(1) component of the error specification, Subsection 2.2
describes the heteroskedastic component of the error specification, and Sub-
section 2.3 describes the mixed heteroskedastic-autoregressive specification
of the error covariance matrix. Some commonly used estimators of ¢ and
p are given in Subsections 3.1, and 3.2, respectively. Section 4 presents an
alternative model specification, which facilitates the derivation of the sug-
gested estimation procedure in Section 5. Section 6 contains some concluding
remarks.

2 The heteroskedastic-autoregressive Linear Model

The notation proposed by Abadir and Magnus (2002) is used throughout

this paper, with minor modifications properly clarified. For any two indices

i and j, 0;; denotes Kronecker’s delta; L = [(lsj)i=1,...,n; j=1,...,m) denotes any

n X m matrix with elements lij; and I = [(li)izl,...,n]y 1T = [(li)i:17_._7n}—r

denote any n x 1 and 1 X n vectors, respectively, with elements [;.
Consider the generalized linear regression model

y=XB+u; 1k(X)=K; u~N0,02", (1)



where y is a T' x 1 vector of observations on the endogenous variable, X
is a T x K full column-rank matrix of observations on K non-stochastic
regressors, and 3 is a K X 1 vector of unknown structural parameters. More-
over, w = [(ut)¢=1,.. 7] is a T' x 1 vector of normally distributed unobserved
stochastic disturbances, and §2 is a T' x T symmetric, positive definite ma-
trix. The assumption of normally distributed disturbances is used in many
theoretical econometric papers (see, e.g., Turkington (2000)).

For the disturbances to be both heteroskedastic and autoregressive, the
tth element of vector u must satisfy the relationship

ut:UtU(AR)t Vt:L...,T, (2)

where o1,...,07 are positive scalars, uncorrelated with the autoregressive
elements of the T' x 1 random vector uar = [(U(AR)t)tzl,...,T]~

2.1 The autoregressive specification
The elements of vector uagr are generated by the stationary AR(1) process
UARY = PUAR)—1 T €6 |pl <1 (t=2,...,T), (3)

where uary: ~ N(0,1/(1 — p?)), and & are iid. N(0,1) random errors
Vt=1,...,T. The time-series uar) (t = 1,...,T) is a stationary AR(1)
process, provided that uagry; = (1 — p?)~1/2¢1. Therefore,

E(uar) =0p, and var(uagr) = E(UARUXR) =(1- p2)_1R, (4)

where R is the following T' x T symmetric, positive definite matrix:
s (G 6)

2.2 The heteroskedastic specification

Let 2, = [(2tj)j=1...m] " be the ¢ th row of the T'xm full column-rank matrix

Z, where zy1 = 1Vt = 1,...,T. Matrix Z contains the observations on m
non-stochastic variables, some of which may be regressors too. Also, let
s = [(sj)i=1...m] € R™\ {0p}, (6)

be a m x 1 non-zero vector of unknown heteroskedasticity parameters. Then,
following Amemiya (1977), we assume that the standard deviations oy in
equation (2) are generated by the linear functions

ol=zl¢ Vt=1,...,T. (7)
We define the T' x T' diagonal matrices

X2 = diag(oy,...,07) and X =diag(o?,...,02) = X232 ()



2.3 Mixed autoregressive-heteroskedastic specification of {2

The elements of the T' x T matrix §2 are functions of the (m + 1) x 1 vector

v=(p,s")7, (9)

where p is the autocorrelation coefficient in the AR(1) process (3) and ¢ is
the vector of coefficients in the linear heteroskedasticity model (7). Then,
equations (2), (3), (4), and (5) imply that

E(u;) =0, var(u) = 02/(1 — p?), cov(us,up) = apoup=1/(1 = p?). (10)

Hence, the T x T matrix 27! can be written as

27 = [(owoud ™0 =)y | (11)
and using equations (5), (8), and (11), we can write
027 = 3121 - )R] X2, (12)

Let D be a T x T band matrix whose (¢,¢’) th element is 1 if [t —¢/| =1
and 0 elsewhere. Also, let A be a 7' x T matrix with 1 in the (1,1)st and
(T, T) th positions and 0’s elsewhere. Then, the inverse of matrix (1—p?)"'R
can be written as

[(1=p*) 'R = (1+ p*)Ir — pD — p*A. (13)
Equations (12) and (13) imply that
2 =321+ p)Ip — pD — p?A| X712, (14)
where
X2 = diag(1/04,...,1/o7). (15)
3 Asymptotically efficient estimators of v = (p,¢")"

From the various econometric estimators of ¢ and p, the most frequently
used in applied research are reported in the following subsections.

3.1 Estimators of ¢ = (s1,...,5,)"

Let x,, be the tth row of the T x K matrix X. Then, model (1) can be
written as

ye = x]. B+ u;, where E(uy) = 0and var(u;) = 2¢ Vt=1,...,T. (16)

The most frequently used estimators of ¢ in (16) are given below:



(i) The least squares or Goldfeld-Quandt (GQ) estimator (Goldfeld and
Quandt 1965)

T -1
SaqQ = [Z Zt-th-] Zzt-(yt — /. BLs)’, (17)
t=1 t=1

where BLS is the least squares estimator of 3.

(ii) The generalized least squares or Amemiya (A) estimator (Amemiya
1977)

T “lr
A = [Z(ZIéGQ)QZt-Z'I] > (2).60q) Pz (v — = Bus)?, (18)

t=1 t=1
where ,E:}Ls is the least squares estimator of 3.

(iii) The iterative Amemiya (IA) estimator

T -l
G = [Z(szi—l)_2zt-2;] D (L6 ) Pz (y — 2. B8i1)?, (19)

t=1 t=1

where index ¢ = 2,3, ... denotes the iteration number, and ¢;_1, Bi—l
are the estimator of ¢ and the feasible GL estimator of B from the
previous iteration. For 7 = 1, the estimator of ¢ from the first iteration
is ¢ =¢a.

(iv) The maximum likelihood (ML) estimator, {yr,, which maximizes the

log-likelihood function

T

T
UB,s)=—1/2) In(zl¢) = 1/2) (y —2,.B)"/(2.5).  (20)
t=1

t=1

3.2 Estimators of p

In a linear regression model with autoregressive disturbances, the most fre-
quently used estimators of p are given below:

(i) The least squares (LS) estimator

T T
pLs = Y fuws)l-1ws)/ Y UiLs), (21)
t=2 t=1

where 1 rg) are the least squares residuals.



(ii) The Durbin-Watson (DW) estimator
pow =1 — DW/2, (22)

where DW is the Durbin-Watson statistic (Durbin and Watson 1950,
1951).

(iii) The generalized least squares (GL) estimator

T T
paL =Y iycryl-16r)/ Y e, (23)
t=2 t=1
where 1) are the generalized least squares residuals.

(iv) The Prais-Winsten estimator, ppw, which, together with Bpw, mini-
mizes the sum of squared GL residuals (Prais and Winsten 1954).

(v) The maximum likelihood (ML) estimator, pyr,, which satisfies a cubic
equation with coefficients defined in terms of the ML residuals in the
regression model (Beach and MacKinnon 1978).

3.3 Comment on the estimation of ¢

Given that var(u;) = o2/(1 — p?), any estimator ¢, of the heteroskedas-
ticity parameters, is a function of the first-order autocorrelation coefficient
p. Because of this, the parameters ¢ and p cannot be readily distinguished
by any standard single-step estimation procedure, which is based upon the
estimators ¢ and p reported in Subsections 3.1 and 3.2, respectively.

The fact that the heteroskedastic variances var(u;) = o2/(1 — p?) are
functions of p, is accounted for by the alternative model specification intro-
duced in Section 4, which results in a very useful reparameterization of the
model.

4 Alternative model specification

Let aﬁt and oy, (t,t = 1,...,T) denote the variances and covariances,
respectively, of the disturbances in (1). Then, equation (10) implies that

o2, =0 /(1—p?) = oy, =0/(1—p*)"2, (24)

Ut

and equations (10) and (24) imply that
Oupuy = O—to-t/p‘t_t/‘/(l - p2) = O—Uto-“t’p“_t,l' (25)

Notice that, by incorporating the factor 1/(1 — p?)'/2 into the standard
deviations oy, equations (24) and (25) express the heteroskedastic variances
and covariances explicitly as functions of the autocorrelation coefficient p.
This results in the reparameterized heteroskedasticity parameter vector g,
proposed in the following subsection.



4.1 Alternative heteroskedastic specification

Define the m x 1 non-zero vector

S = (1= p") 7' = [(S)j=1..m] € R™ \ {Om}, (26)

with elements ¢,; = (1 — p?)7I; (j = 1,...,m). Then, by combining (7),
(24) and (26) we find that

o2, = (zL6)/(1=p) =2  [1=p) Y] = 2la VE=1,....T. (27)

Dividing the ¢ th observation, y; = ;. B+, of model (1) by o4, = (21 6.)"/?,
we find the alternative autoregressive specification given in the following
subsection.

4.2 Alternative autoregressive specification

Define the T' x 1 random vector w, = [(ust)i=1,. 7] with elements

Ust = Ut Oy, - (28)
Then, equations (2), (10), (24), and (28) imply that
use = (1= p*)Pugany (29)
Then, u(ary: ~ N(0,1/(1 — p*)) = uw ~ N(0,1) V¢. Therefore,
E(u.) =07 and var(u.) = E(u.u,) = R. (30)
Equations (5), (10), (29) and (30) imply that
E(ty) =0, var(us) =1, cov(uwuy) = plt=*1, (31)
Finally, equations (3), (28), and (29) imply that
Usg = (1 — P2)1/2 (PU(AR)t—l + é‘t)
= p |1 = ) Pugary | + (1= p) 2%
= PUsxt—1 + Exty (32)

where e,; = (1—p?)"/2¢; are i.i.d. N(0, (1—p?)) random errors Vt = 1,...,7.
Equation (32) implies that the elements of the random vector u, are gener-

ated by a stationary AR(1) process with autocorrelation coefficient p.
Further, by combining (24) and (27) we find that

ol =02 (1-p*) =2zlc(l—p?) Vt=1,...,T (33)
Also, equations (6) and (26) imply that

s=6(1-p*) = Gg=qi(l—p?) (i=1,...,m). (34)



4.3 Alternative representation of 2

Equations (11), (24), and (25) imply that

2= [(Uutaut’plt_t/‘)t =1 T] : (35)

-----

Define the T x T diagonal matrices 2= diag(oy,, ..., 04, ) and )Rt

diag(1/ou,,...,1/0u,). Then, equation (24) implies that
B2 = (1 ) P ding(on,..,or) = (1— )" 25V2 (36)

and
STV = (1 ) 2e12, (37)

From equations (12) and (36) we take
01— [(1 _ p2)71/221/2} R [(1 _ p2)71/221/2:| _ Zi/zRZi/z, (38)
and form equations (14) and (37) we take

Q- [(1 —p2)_1/22*_1/2] [(1+ p*)Ir — pD — p2A] [(1 —,02)_1/22*_1/2
= (1= ) =P+ ) Ir - pD - P Al (39)

5 Suggested estimation procedure

Let LS, GL, IG, and ML denote the least squares, generalized least squares,
iterative generalized least squares, and maximum likelihood estimators, re-
spectively. Also, let BI denote any consistent estimator of 3 indexed by
I =LS,GL,IG,ML. The discussion in Sections 2 and 4 suggests the follow-
ing 7-step procedure for the estimation of model (1):

Step 1: Estimate model (1) using the B estimator. Then, the correspond-
ing residual vector:

ar =y~ BiX = [(@m)e-1,.1] (40)
is a consistent predictor of the disturbance vector u.

Step 2: Use one of the consistent estimators given in Subsection 3.1 in order

to estimate the parameter vector g,. Then, estimate matrix 3, 1/2 as
o—1/2 . R R
3, = diag(1/6u,,- .-+ 1/0uy), (41)
where .
&ut:(th-gA*) / vVi=1,...,T. (42)



Step 3: Estimate the heteroskedasticity-corrected residuals

G,y = 3, oy = [(Gaer))i=1,...7] » (43)
where .
N Ug(1
far(r) = &;’ Vi=1,...,T, (44)

and 4y is the predictor of w estimated by (40).

Step 4: Use one of the consistent estimators given in Subsection 3.2 in order

to calculate an initial estimate p, of the autocorrelation coefficient p.

Step 5: Use (34) and the consistent estimators ¢, and p, in order to estimate

the parameter vector ¢ as
¢=¢(1-p2) = &=¢(1-p) Vi=1,...,m. (45)
Then, estimate matrix X1/ as
372 = diag(1/64,...,1/67), (46)

where
6= (2" vi=1,....T (47)

Alternatively, ¢ can be estimated via the following asymptotically
equivalent process:

(i) Use the initial estimator p, in order to transform model (1) into
the autoregression-corrected model

yu = XupB + um, (48)

where the elements of vector ug = [(U(H)t)t:17._.7T] are purely
heteroskedastic disturbances, given by the following formulae:

wany = (1= p2)2ur, wry = ur — prwg—y Yt =2,...,T. (49)

(ii) use one of the consistent estimators given in Subsection 3.1 in or-
der to estimate the parameter vector ¢, and then estimate matrix
X2 via (46) and (47).

Although from the estimation viewpoint (45) is perfectly adequate as
a consistent estimator of ¢, the estimator ¢ based on the residuals of
model (48) enables the researcher to find the finite-sample distribu-
tional properties of any consistent estimator of ¢ in Subsection 3.1.
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Step 6: Premultiply model (1) by 3-1/2 given in (46), in order to derive
heteroskedasticity-corrected model

Yar = XARB + uAR, (50)

where the elements of vector uag = [(U(AR)t)t:Lm’T} are purely au-
toregressive disturbances, given by the following formula:

uary = ut/or Vt=1,...,T, (51)

where 6 are given in (47). Then, use one of the consistent estimators
given in Subsection 3.2 in order to estimate the autocorrelation coeffi-
cient p. The estimator p based on the residuals of model (50) enables
the researcher to find the finite-sample distributional properties of any
consistent estimator of p in Subsection 3.2.

Step 7: Use the estimators 3-1/2 and p from Steps 5 and 6, respectively,
in order to calculate the estimator

0O — 271/2[(1 +/32)IT — jpD — /SQA]fJ*l/Q, (52)

which can be used for the feasible generalized least squares estimation
of model (1).

6 Concluding remarks

In this paper, we examined the normal linear regression model with a dis-
turbance specification, which is the combination of the Amemiya’s (1977)
linear heteroskedasticity structure with a time-series of stationary first-order
autoregressive error terms.

Since the heteroskedastic variances, var(u;) = o2 /(1 — p?), are functions
of the first-order autocorrelation coefficient p, the estimators ¢ and p used
in applied research cannot properly distinguish the estimation of the pa-
rameters ¢ and p. To cope with this problem, we introduced an alternative
parameterization of the model, from which we derived a multi-step estima-
tion procedure that distinguishes the information conveyed by the estimators
¢ and p. Needless to note that this estimation procedure is not proposed as
an alternative to the heteroskedasticity-autocorrelation consistent estimation
in applied econometric research, but it is introduced for theoretical purposes
only.

The suggested estimation procedure enables the researcher to come up
with two distinct adjusted generalized linear models of theoretical impor-
tance in econometrics, one of which has heteroskedastic disturbances, and
another that has first-order autoregressive disturbances. These two distinct
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models can be used for the theoretical examination of some crucial finite-
sample distributional properties of the estimators ¢ and p. These distribu-
tional properties can, in turn, be used for the calculation of finite-sample
Edgeworth and Cornish-Fisher size corrected ¢ and F' tests in the linear
model with heteroskedastic-autoregressive disturbances. This is an interest-
ing topic for further research.

Given the attention paid, in applied research, to the avoidance of erro-
neous tests in small samples, much endeavor has been devoted to the devel-
opment of size corrected econometric tests, which are implemented by using
either the Edgeworth-corrected critical values, or the corresponding Cornish-
Fisher corrected test statistics (see, inter alia, Cornish and Fisher (1937),
Fisher and Cornish (1960), Hill and Davis (1968), Rothenberg (1984)). Such
size corrected t and F' tests have already been proposed for the linear model
with AR(1) errors (Magdalinos and Symeonides 1995), for the linear model
with heteroskedastic errors (Symeonides et al. 2007), and for the S.U.R.
model with autocorrelated errors (Symeonides et al. 2016).
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