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Abstract

We discuss a simple, exactly solvable model of stochastic stock dy-
namics that incorporates regime switching between healthy and distressed
regimes. Using this model, which is analytically tractable, we discuss a
way of extracting expected returns for stocks from realized CDS spreads,
essentially, the CDS market sentiment about future stock returns. This
alpha/signal could be useful in a cross-sectional (statistical arbitrage) con-
text for equities trading.
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A geometric Brownian motion (with a drift) is a simple model of stock dynamics

used, e.g., in the Black-Scholes-Merton model [1], [5] in the context of options

(and other derivatives) pricing. Such a model describes a stock price that on

average increases (or decreases) exponentially in time, but does not incorporate

any regime-switching between the healthy (increasing stock price) and distressed

(decreasing stock price) regimes, with the distressed regime potentially leading

to an eventual default. Merton’s corporate default model [6] incorporates an ad

hoc threshold for the underlying (unobservable) “firm value” stochastic process

below which a credit event is interpreted to have occurred.

In this note we discuss a simple model of stock dynamics that smoothly in-

terpolates between the healthy and distressed regimes. This model is exactly

solvable in the sense that, even though the underlying dynamics of the (unob-

servable) state variable is nontrivial (the drift term for the state variable is a

nonlinear function of said variable), the transition density is expressed through

elementary functions. A long-run probability of a healthy-to-distressed transi-

tion (which can be interpreted as the probability of default) can thus be readily

computed. A connection of this model to physics, among other things, is that

the Schrödinger equation for the transition density turns out to have a constant

potential, hence exact solvability.

This model can be thought of as a simple (toy) model for CDS pricing (with

only 2 free parameters). Conversely, it can be thought of as a model for extracting

the CDS market sentiment about the expected return of the stock (of the company

whose debt the CDS insures), at least in a cross-sectional, statistical sense, i.e.,

when applied to a broad cross-section of stocks. To be clear, this is a simple

illustrative model and we make no claim regarding its empirical prowess. More

complex models with more parameters can be constructed along these lines, and,

as always, one must bear in mind that, while more parameters can improve in-

sample fits (“calibration”), often they do not necessarily translate into out-of-

sample forecasting power.

So, here is a simple 2-parameter model. Let the stock price St be modeled via

St = exp(Xt) (1)

dXt = µ(Xt) dt + σ dWt (2)

The drift µ(Xt) has no explicit dependence on time t, and the volatility σ is

constant; Wt is a Brownian motion (a.k.a. a Wiener process), with null drift and

variance t.



Zura Kakushadze 115

Let P (x, x0; t, 0) be the probability distribution of starting at Xt = x0 at t = 0

and ending at Xt = x at time t. The Fokker-Planck equation reads:

∂tP =
σ2

2
∂2

xP − ∂x [µ P ] (3)

Let us reduce it to the Schrödinger equation via

P = exp

[
1

σ2

∫ x

x0

µ(x′) dx′
]

P̃ (4)

We have

∂tP̃ =
σ2

2

[
∂2

xP̃ − U P̃
]

(5)

U = h2 + ∂xh (6)

h =
µ

σ2
(7)

We can model healthy and distressed regimes by having a smooth transition

between asymptotically positive (for x→ +∞) drift and asymptotically negative

(for x→ −∞) drift. A simple, exactly solvable model is given by:

µ(x) = ν σ2 tanh [ν (x− x∗)] (8)

U(x) ≡ ν2 (9)

So, the “potential” U(x) in the Schrödinger equation is constant; however, the

drift µ(x) smoothly interpolates between positive (healthy) and negative (dis-

tressed) values. The probability density (normalized to 1 when integrated over x

from −∞ to +∞) then reads:

P (x, x0; t, 0) =
1√

2πt σ

cosh [ν (x− x∗)]

cosh [ν (x0 − x∗)]
exp

[
−(x− x0)

2

2σ2t
− σ2ν2t

2

]
(10)

Asymptotically, we have

P (x→ ±∞, x0; t, 0) ∼ 1√
2πt σ

exp

[
−(x− x0 ∓ µ̃t)2

2σ2t

]
(11)

where µ̃ = ν σ2, i.e., asymptotically we have probability densities for Brownian

motions with constant drifts +µ̃ and −µ̃ for x→ +∞ and x→ −∞, respectively.

The price S∗ = exp(x∗) delineates healthy (St > S∗, i.e., Xt > x∗) and

distressed (St < S∗, i.e., Xt < x∗) regimes. Using the probability density
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P (x, x0; t, 0), we can calculate the probability P (ST ≤ S∗|S0 > S∗) of start-

ing in the healthy regime at time t = 0 and ending up in the distressed regime at

time t = T , and the probability P (ST ≥ S∗|S0 < S∗) of starting in the distressed

regime at time t = 0 and ending up in the healthy regime at time t = T , which

asymptotically (for large T ) are given by

P (ST ≤ S∗|S0 > S∗)→

[
1 +

(
S0

S∗

)2ν
]−1

(12)

P (ST ≥ S∗|S0 < S∗)→

[
1 +

(
S∗

S0

)2ν
]−1

(13)

The r.h.s. of Eq. (12) can be interpreted as the probability of default – this is

the probability of starting in the healthy regime at price S0 > S∗ and ending in

the distressed regime as T →∞, which for all intents and purposes would imply

that the company defaults as it does not get out of the distressed state at large

T . Since the probability of default is smaller than 1 even at large T , this implies

that the hazard rate is not constant and for a company in the healthy state it

decays with time, which is not surprising taking into account the positive drift in

Xt for Xt > x∗.

The above model has two parameters, ν and S∗. More complex functions

µ(x) with similar properties can be considered (at the expense of exact solvabil-

ity), including those with many more tunable parameters, which may be used

to fit empirical data in-sample (albeit this may not translate into out-of-sample

predictive power).

Eq. (2) can be viewed as a Langevin equation

dXt

dt
= F (Xt) + σ ηt (14)

Here ηt = dWt/dt is the white noise, F (x) = −∂xV (x) is the external force

(F (x) = µ(x)), and V (x) is the potential. In the model (8), we have

V (x) = −σ2 ln (cosh [ν (x− x∗)]) + V∗ (15)

where V∗ is an immaterial integration constant (V∗ = V (x∗)). Asymptotically,

as ν |x− x∗| � 1, we have V (x) ∼ −µ̃ |x− x∗|, so the potential is a
∧

-shaped

wedge smoothed out near x = x∗ (the cusp of the wedge). Asymptotically, in

the healthy regime there is a constant force driving Xt to higher values (positive

drift), while in the distressed regime there is a constant force driving Xt to lower

values (negative drift). In a sense, akin to [2], here we have a “barrier” separating
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the healthy and distressed regimes, except that there are no minima on either

side of the barrier. Asymptotically, the dynamics to the right (left) of the barrier

is that of a geometric Brownian motion with a positive (negative) drift.

For the sake of simplicity, let us focus on the healthy regime, away from

the “threshold” S∗, such that the probability of default is small. Let P be the

default probability by time T . For maturity T , we can relate the CDS spread Z

(assuming it is measured in basis points) to P via Z ≈ 104 (1−R) P/T , where

R is the recovery rate (typically, R = 0.4). This assumes a constant hazard rate,

which is not the case in the model above. However, for small default probabilities

we can assume a linear relationship between the CDS spread Z and the default

probability P . The “tricky” part is the normalization factor as it involves the

maturity T , whereas in Eq. (12) we take the large T limit. Happily, as we will see

in a moment, for our purposes here the precise normalization factor is actually not

needed. Furthermore, the large T limit result (12) is valid so long as σν
√

T � 1,

that is, µ̃ T � σ
√

T .

So, we can try to think about our model as a model for CDS pricing. While

such (or similar) models might work well in-sample (“calibration”), their predic-

tive power out-of-sample typically is at best questionable. This is because at least

one parameter – in this case ν – is hard to predict accurately out-of-sample based

on historical data. Indeed, predicting ν is equivalent to predicting the drift, i.e.,

the expected return of the stock. Put another way, this in fact is equivalent to

having a highly predictive alpha model for the stock, which is no easy feat to

accomplish.

Alternatively, we can turn the tables and think of our model as a means of

extracting the stock expected return from the CDS spread Z. Assuming that the

default probability P is small, from Eq. (12) we have:

ln(P ) ≈ a− 2ν ln(S0) (16)

a = 2ν ln(S∗) (17)

Assuming a linear relationship between the CDS spread Z and the default prob-

ability P , i.e., Z ≈ b P (where b is the aforesaid normalization factor, whose

precise value will turn out not be relevant below), we have

ln(Z) ≈ ã− 2ν ln(S0) (18)

ã = a + ln(b) (19)

So, if we have a time series of CDS spreads Z(ts) (where ts, s = 1, . . . ,M , are the

times in the time series, e.g., trading days), then we can run a linear regression

of ln(Z(ts)) over the logs of the prices ln(S(ts)) (where S(ts) corresponds to S0
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in Eq. (18)) with the intercept. The regression coefficient of ln(S(ts)) is nothing

but −2ν. The catch is that in real life the drift and volatility are not constant, so

running a regression over a long time period would make little sense, and if it is

run over a short period (e.g., 1 month) with the view of capturing a short-horizon

sentiment of the CDS market on the drift, then the intercept ã (which is related

to the “threshold” price S∗) can, as is often the case, be expected to be unstable

out-of-sample, which affects the forecasting power for the drift. Así es la vida.

There is no free lunch.

However, instead of thinking about this model in terms of applying it to just

a single stock, we can try a statistical approach by taking a large cross-section of

stocks, extracting shorter-horizon expected returns for each stock as above, and

then using these expected returns to construct, e.g., a dollar-neutral strategy,

either via (constrained) optimization, or by ranking (e.g., buying the stocks in

the top decile by ν, and selling the stocks in the bottom decile). Such a cross-

sectional approach, as in other strategies (see, e.g., [4]), may reduce noise and

improve the performance characteristics (e.g., the Sharpe ratio [7]) of the trading

strategy. So, this alpha can then be used in the context of statistical arbitrage,

possibly in a mix of many other alphas (and with a caveat that CDS data may

not be available for the entire universe of stocks traded by other alphas).

This write-up was inspired by a discussion at a dinner in December 2018

with Peter Carr and Igor Halperin (which discussion prompted me to make an

indirect parallel of the topic of the healthy vs. distressed dynamics with [3]), and

a subsequent stimulating email correspondence with Igor Halperin, to whom I am

grateful for discussing the ideas set forth in [2].
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