ISSN: 2056-3736 (Online Version) | 2056-3728 (Print Version)

Productivity, efficiency and firm’s market value: Microeconomic evidence from multinational corporations

Panayiotis Tzeremes

Correspondence: Panayiotis Tzeremes,

Department of Economics, University of Thessaly, Greece

pdf (572.4 Kb) | doi:


The paper proposes a conditional range directional distance estimator by modifying the range directional distance model utilizing the probabilistic characterization of directional distance functions (DDF). Moreover, as an illustrative example the paper applies the proposed estimator on a sample of 89 multinational corporations for the period 2006-2012. The paper examines the effect of firms’ market value on their estimated operational performance levels. Inefficiency measures are estimated over the examined period. The results reveal a nonlinear (U-shape) relationship between firms’ market value and their operating efficiency levels. Finally, the analysis from applying the local linear estimator reveals that lower market values are associated with higher operating inefficiencies, whereas, higher market values are associated with higher operating efficiencies.


  Productivity, Firm’ production, Efficiency, Market value, Microeconomic analysis


Akther, S., Fukuyama, H., & Weber, W. L. (2013). Estimating two-stage network slacks-based inefficiency: An application to Bangladesh banking. Omega, 41(1), 88-96.Asmild, M., & Pastor, J. T. (2010). Slack free MEA and RDM with comprehensive efficiency measures. Omega, 38(6), 475-483.Avkiran, N. K. (2009). Removing the impact of environment with units-invariant efficient frontier analysis: An illustrative case study with intertemporal panel data. Omega, 37(3), 535-544.Bădin, L., Daraio, C., & Simar, L. (2010). Optimal bandwidth selection for conditional efficiency measures: A data-driven approach. European Journal of Operational Research, 201(2), 633-640.Barros, C. P., Managi, S., & Matousek, R. (2012). The technical efficiency of the Japanese banks: non-radial directional performance measurement with undesirable output. Omega, 40(1), 1-8.Bogetoft, P., & Hougaard, J. L. (1999). Efficiency evaluations based on potential (non-proportional) improvements. Journal of Productivity Analysis, 12(3), 233-247.Cazals, C., Florens, J. P., & Simar, L. (2002). Nonparametric frontier estimation: a robust approach. Journal of econometrics, 106(1), 1-25.Chambers, R. G., Chung, Y., & Färe, R. (1996). Benefit and distance functions. Journal of Economic Theory, 70(2), 407-419.Chambers, R. G., Chung, Y., & Färe, R. (1998). Profit, directional distance functions, and Nerlovian efficiency. Journal of Optimization Theory and Applications, 98(2), 351-364.Chen, Y. (2004). Ranking efficient units in DEA. Omega, 32(3), 213-219.Chen, Y., Du, J., & Huo, J. (2013). Super-efficiency based on a modified directional distance function. Omega, 41(3), 621-625.Chung, Y. H., Färe, R., & Grosskopf, S. (1997). Productivity and undesirable outputs: a directional distance function approach Journal of Environmental Management, 51(3), 229-240.Daraio, C., & Simar, L. (2005). Introducing environmental variables in nonparametric frontier models: a probabilistic approach. Journal of Productivity Analysis, 24(1), 93-121.Daraio, C., & Simar, L. (2006). A robust nonparametric approach to evaluate and explain the performance of mutual funds. European Journal of Operational Research, 175(1), 516-542.Daraio, C., & Simar, L. (2007). Conditional nonparametric frontier models for convex and nonconvex technologies: a unifying approach. Journal of Productivity Analysis, 28(1-2), 13-32.Färe, R., & Grosskopf, S. (2009). A comment on weak disposability in nonparametric production analysis. American Journal of Agricultural Economics, 91(2), 535-538.Färe, R., & Grosskopf, S. (2013). DEA, directional distance functions and positive, affine data transformation. Omega, 41(1), 28-30.Färe, R., Grosskopf, S., & Pasurka Jr, C. A. (2007a). Environmental production functions and environmental directional distance functions. Energy, 32(7), 1055-1066.Färe, R., Grosskopf, S., & Pasurka Jr, C. A. (2007b). Pollution abatement activities and traditional productivity. Ecological Economics, 62(3-4), 673-682.Färe, R., Grosskopf, S., & Pasurka Jr, C. A. (2010). Toxic releases: an environmental performance index for coal-fired power plants. Energy Economics, 32(1), 158-165.Färe, R., Grosskopf, S., & Pasurka, C. A. (2006). Social responsibility: US power plants 1985–1998. Journal of Productivity analysis, 26(3), 259-267.Färe, R., Grosskopf, S., Lovell, C. K., & Pasurka, C. (1989). Multilateral productivity comparisons when some outputs are undesirable: a nonparametric approach. The Review of Economics and Statistics, 90-98.Farrell, M. J. (1957). The measurement of productive efficiency. Journal of the Royal Statistical Society: Series A (General), 120(3), 253-281.Hall, P., Racine, J., & Li, Q. (2004). Cross-validation and the estimation of conditional probability densities. Journal of the American Statistical Association, 99(468), 1015-1026.Hughes, J. P., Lang, W., Moon, C. G., & Pagano, M. S. (1997). Measuring the efficiency of capital allocation in commercial banking. Working paper no. 98-2, Federal Reserve Bank of Philadelphia, Philadelphia, USA.Jeong, S. O., Park, B. U., & Simar, L. (2010). Nonparametric conditional efficiency measures: asymptotic properties. Annals of Operations Research, 173(1), 105-122.Johnson, A. L., & Kuosmanen, T. (2011). One-stage estimation of the effects of operational conditions and practices on productive performance: asymptotically normal and efficient, root-n consistent StoNEZD method. Journal of Productivity Analysis, 36(2), 219-230.Johnson, A. L., & Kuosmanen, T. (2012). One-stage and two-stage DEA estimation of the effects of contextual variables. European Journal of Operational Research, 220(2), 559-570.Kao, C., & Hung, H. T. (2007). Management performance: An empirical study of the manufacturing companies in Taiwan. Omega, 35(2), 152-160.Kuosmanen, T. (2005). Weak disposability in nonparametric production analysis with undesirable outputs. American Journal of Agricultural Economics, 87(4), 1077-1082.Kuosmanen, T. (2012). Stochastic semi-nonparametric frontier estimation of electricity distribution networks: Application of the StoNED method in the Finnish regulatory model. Energy Economics, 34(6), 2189-2199.Kuosmanen, T., & Matin, R. K. (2011). Duality of weakly disposable technology. Omega, 39(5), 504-512.Kuosmanen, T., & Podinovski, V. (2009). Weak disposability in nonparametric production analysis: reply to Färe and Grosskopf. American Journal of Agricultural Economics, 91(2), 539-545.Li, Q., & Racine, J. (2004). Cross-validated local linear nonparametric regression. Statistica Sinica, 485-512.Li, Q., & Racine, J. S. (2007). Nonparametric econometrics: theory and practice. Princeton University Press, New Jersey.Luenberger, D. G. (1992). Benefit functions and duality. Journal of Mathematical Economics, 21(5), 461-481.Luenberger, D. G. (1994). Optimality and the theory of value. Journal of Economic Theory, 63(2), 147-169.Luo, X. (2003). Evaluating the profitability and marketability efficiency of large banks: An application of data envelopment analysis. Journal of Business Research, 56(8), 627-635.McConnell, J. J., & Servaes, H. (1990). Additional evidence on equity ownership and corporate value. Journal of Financial Economics, 27(2), 595-612.Mehran, H. (1995). Executive compensation structure, ownership, and firm performance. Journal of Financial Economics, 38(2), 163-184.Modigliani, F., & Miller, M. H. (1958). The cost of capital, corporation finance and the theory of investment. The American Economic Review, 48(3), 261-297.Morck, R., Shleifer, A., & Vishny, R. W. (1988). Management ownership and market valuation: An empirical analysis. Journal of Financial Economics, 20, 293-315.Portela, M. S., Thanassoulis, E., & Simpson, G. (2004). Negative data in DEA: A directional distance approach applied to bank branches. Journal of the Operational Research Society, 55(10), 1111-1121.Racine, J. (1997). Consistent significance testing for nonparametric regression. Journal of Business & Economic Statistics, 15(3), 369-378.Racine, J. S. (2008). Nonparametric econometrics: A primer. Foundations and Trends® in Econometrics, 3(1), 1-88.Racine, J. S., Hart, J., & Li, Q. (2006). Testing the significance of categorical predictor variables in nonparametric regression models. Econometric Reviews, 25(4), 523-544.Racine, J., & Li, Q. (2004). Nonparametric estimation of regression functions with both categorical and continuous data. Journal of Econometrics, 119(1), 99-130.Ramanathan, R., & Yunfeng, J. (2009). Incorporating cost and environmental factors in quality function deployment using data envelopment analysis. Omega, 37(3), 711-723.Seiford, L. M., & Zhu, J. (1999). Profitability and marketability of the top 55 US commercial banks. Management Science, 45(9), 1270-1288.Simar, L., & Vanhems, A. (2012). Probabilistic characterization of directional distances and their robust versions. Journal of Econometrics, 166(2), 342-354.Simar, L., & Wilson, P. W. (2007). Estimation and inference in two-stage, semi-parametric models of production processes. Journal of Econometrics, 136(1), 31-64.Tobin, J. (1969). A general equilibrium approach to monetary theory. Journal of Money, Credit and Banking, 1(1), 15-29.Wang, C. H., Lu, Y. H., Huang, C. W., & Lee, J. Y. (2013). R&D, productivity, and market value: An empirical study from high-technology firms. Omega, 41(1), 143-155.Zelenyuk, V. (2013). A scale elasticity measure for directional distance function and its dual: Theory and DEA estimation. European Journal of Operational Research, 228(3), 592-600.