ISSN: 2056-3736 (Online Version) | 2056-3728 (Print Version)

Volatility in U.S. Natural Gas Prices: Exploring Market Dynamics and Economic Policy Uncertainties

Bahram Adrangi, Ales Kresta, Kambiz Raffiee and Tomas Tichy

Correspondence: Bahram Adrangi, adrangi@up.edu

University of Portland, Portland, Oregon.

pdf (646.98 Kb) | doi: https://doi.org/10.47260/bae/12211

Abstract

We investigate the association between the Henry Hub natural gas pricFe (HHNGP) short-and long-run volatilities in the US and Global economic policy uncertainties, and crude oil market uncertainties (GEPU, OVX, respectively). Our findings from a GARCH-MIDAS methodology that takes the US industrial production and the US economic policy uncertainty (EPU) into account, Markov switching regressions (MSR) and Quantile Granger causality tests suggest that the association of realized short-term and long-term volatilities and global policy and oil market uncertainties are stable over time. Both the short- and long-term volatilities (STV and LTV, respectively) are Granger caused by GEPU and OVX at some quantiles. These findings have significant ramifications for policy makers and natural gas users in US.

Keywords:

  Natural gas price volatility, GARCH-MIDAS, Economic policy uncertainty, Economic uncertainty, Quantile Regression Granger causality, Markov Switching Regression.


References

Abiad, A., & Qureshi, I. A. (2023). The macroeconomic effects of oil price uncertainty. Energy Economics, 125, 106839.

Adekoya, O. B., Oliyide, J. A., Kenku, O. T., & Al-Faryan, M. A. S. (2022). Comparative response of global energy firm stocks to uncertainties from the crude oil market, stock market, and economic policy. Resources Policy, 79, 103004.

Adrangi, B., & Raffiee, K. (1999a). On total price uncertainty and the behavior of a competitive firm. The American Economist, 43(2), 59-65.

Adrangi, B., Chatrath, A., & Raffiee, K. (1999b). Volatility characteristics and persistence in Latin American emerging markets. International Journal of Business, 4(1), 20-37.

Adrangi, B., Chatrath, A., Dhanda, K. K., & Raffiee, K. (2001). Chaos in oil prices? Evidence from futures markets. Energy Economics, 23(4), 405-425.

Adrangi, B., Chatrath, A., Macri, J., & Raffiee, K. (2015). Crude oil price volatility spillovers into major equity markets. Journal of Energy Markets, 8(1), 77-95.

Adrangi, B., Chatrath, A., Macri, J., & Raffiee, K. (2019). Dynamic responses of major equity markets to the US fear index. Journal of Risk and Financial Management, 12(4), 156-

Adrangi, B., Chatrath, A., Macri, J., & Raffiee, K. (2021). Dynamics of crude oil price shocks and major Latin American Equity Markets: A study in time and frequency domains. Bulletin of Economic Research, 73(3), 432-455.

Adrangi, B., Chatrath, A., & Raffiee, K. (2023a). S&P 500 volatility, volatility regimes, and economic uncertainty. Bulletin of Economic Research, 75(4), 1362-1387.

Adrangi, B., & Hamilton, E. (2023b). Market concentration and performance: The case of the US airline industry. The Journal of Theoretical Accounting Research, 18(3), 54-78.

Adrangi, B., Chatrath, A., Maitra, D., & Sengupta, A. (2024a). Is the Influence of Oil Shocks on Economic Policy Uncertainty Fading? American Business Review, 27(2), 5.

Adrangi, B., Chatrath, A., Madhuparna K., & Raffiee, K. (2024b). Enterprise Value, and economic uncertainty: The Case of US Air Carriers. Journal of Theoretical Accounting Research, 20(1), 123-175.

Adrangi, B., Chatrath, A., Raffiee, k. (2024c). U.S. Diesel Fuel Price Volatility and Economic Policy Uncertainty.  Oil, Gas & Energy Quarterly 72 (3), 533-566

Adrangi, B., Chatrath, A., Hatamerad, S. & Raffiee, K. (2025a).  Equity Markets Volatility, Regime Dependence and Economic Uncertainty: The Case of Pacific Basin. Bulletin of Applied Economics, Bulletin of Applied Economics, 2025, 12(1), 75-105. https://doi.org/10.47260/bae/1215

Adrangi, B., Hatamerad, S., Kolay, M., & Raffiee, K (2025b). Economic and Policy Uncertainties and Firm Value: The Case of Consumer Durable Goods. Journal of Theoretical Accounting Research, Forthcoming.

Adrangi, B., Chatrath, A., Kolay, M., & Raffiee, K (2025c). Economic and Policy Uncertainties and Firm Value in The Oil and Gas Industry. Journal of Theoretical Accounting Research, Forthcoming.

Alizadeh, A. H., & Nomikos, N. K. (2011). Dynamics of the term structure and volatility of shipping freight rates. Journal of Transport Economics and Policy (JTEP), 45(1), 105-128.

Altig, D., Baker, S., Barrero, J. M., Bloom, N., Bunn, P., Chen, S., & Thwaites, G. (2020). Economic uncertainty before and during the COVID-19 pandemic. Journal of Public Economics, 191, 104274.

Amado, C., Silvennoinen, A., & Teräsvirta, T. (2019). Models with multiplicative decomposition of conditional variances and correlations. Financial mathematics, volatility and covariance modelling, 2, 217-260.

Amendola, A., Candila, V., & Scognamillo, A. (2017). On the influence of US monetary policy on crude oil price volatility. Empirical Economics, 52(1), 155-178.

Amendola, A., Candila, V., & Gallo, G. M. (2019). On the asymmetric impact of macro–variables on volatility. Economic Modelling, 76, 135-152.

Ang, A., & Chen, J. (2002). Asymmetric correlations of equity portfolios. Journal of financial Economics, 63(3), 443-494.

Arora, V., & Lieskovsky, J. (2014). Natural gas and US economic activity. The Energy Journal, 35(3).

Asgharian, H., Hou, A. J., & Javed, F. (2013). The importance of the macroeconomic variables in forecasting stock return variance:A GARCH‐MIDAS approach. Journal of Forecasting, 32(7), 600-612.

Assaf, A., Charif, H., & Mokni, K. (2021). Dynamic connectedness between uncertainty and energy markets: Do investor sentiments matter?. Resources Policy, 72, 102112.

Awartani, B. M., & Corradi, V. (2005). Predicting the volatility of the S&P-500 stock index via GARCH models: the role of asymmetries. International Journal of Forecasting, 21(1), 167-183.

Baele, L., Bekaert, G., Cho, S., Inghelbrecht, K., & Moreno, A. (2015). Macroeconomic regimes. Journal of Monetary Economics, 70, 51-71.

Bachmeier, L. J., & Griffin, J. M. (2003). New evidence on asymmetric gasoline price responses. Review of Economics and Statistics, 85(3), 772-776.

Bai, J., & Perron, P. (2003). Critical values for multiple structural change tests. The Econometrics Journal, 6(1), 72-78.

Baker, S. R., Bloom, N., Davis, S. J., & Kost, K. J. (2019). Policy news and stock market volatility (No. w25720). National Bureau of Economic Research.

Baker, S. R., Bloom, N., & Davis, S. J. (2016). Measuring economic policy uncertainty. The Quarterly Journal of Economics, 131(4), 1593-1636.

Baker, S. R., Bloom, N., & Davis, S. J. (2012a). Has economic policy uncertainty hampered the recovery?. Becker Friedman Institute for Research In Economics Working Paper, (2012-003).

Baker, Scott, Bloom, Nicholas and Davis, Steven J. (2012b), “Measuring Economic Policy Uncertainty,” University of Chicago and Stanford University. Available at www.policyuncertainty.com

Baker, S. R., Bloom, N., Davis, S. J., & Renault, T. (2021). Twitter-derived measures of economic uncertainty. Available online: PolicyUncertainty. com (accessed on 15 June 2022).

Baker, M., & Wurgler, J. (2006). Investor sentiment and the cross‐section of stock returns. The journal of Finance, 61(4), 1645-1680.

Baker, M., & Wurgler, J. (2007). Investor sentiment in the stock market. Journal of economic perspectives, 21(2), 129-152.

Ball, C. A., & Roma, A. (1994). Stochastic volatility option pricing. Journal of Financial and Quantitative Analysis, 29(4), 589-607.

Basu, S., & Bundick, B. (2017). Uncertainty shocks in a model of effective demand. Econometrica, 85(3), 937-958.

Barrodale, I., & Roberts, F. D. (1973). An improved algorithm for discrete l_1 linear approximation. SIAM Journal on Numerical Analysis, 10(5), 839-848.

Beckmann, J., & Czudaj, R. (2014). Non-linearities in the relationship of agricultural futures prices. European Review of Agricultural Economics, 41(1), 1-23.

Bernanke, B. S. (1983). Irreversibility, uncertainty, and cyclical investment. The Quarterly Journal of Economics, 98(1), 85-106.

Bilgili, F., Koçak, E., Bulut, Ü., & Sualp, M. N. (2016). How did the US economy react to shale gas production revolution? An advanced time series approach. Energy, 116, 963-977.

Bjï, H. C., & Zhulanova, J. (2018). The Shale Oil Boom and the US Economy: Spillovers and Time-Varying Effects (No. 8/2018).

Bloom, N., Bond, S., & Van Reenen, J. (2007). Uncertainty and investment dynamics. The Review of Economic Studies, 74(2), 391-415.

Bloom, N. (2009). The impact of uncertainty shocks. Econometrica, 77(3), 623-685.

Bloom, N. (2014). Fluctuations in uncertainty. Journal of economic Perspectives, 28(2), 153-176.

Bollerslev, T. (1987). A conditionally heteroskedastic time series model for speculative prices and rates of return. The review of economics and statistics, 542-547.

Borenstein, S., Cameron, A.C., And Gilbert, R. "Do Gasoline Prices Respond Asymmetrically to Crude Oil Price Changes?" Quarterly Journal of Economics, Vol. 112 (1997), pp. 305-339.

Borup, D., & Jakobsen, J. S. (2019). Capturing volatility persistence: a dynamically complete realized EGARCH-MIDAS model. Quantitative Finance, 19(11), 1839-1855.

Bouri, E., Remzi, G. Ö. K., Gemici, E., & Erkan, K. A. R. A. (2023). Do geopolitical risk, economic policy uncertainty, and oil implied volatility drive assets across quantiles and time-horizons?. The Quarterly Review of Economics and Finance.

Brown, S., Yüce, M. (2002), Energy prices and aggregate economic activity: An interpretative survey. The Quarterly Review of Economics and Finance, 42(2), 193-208

Carnero, M. A., Peña, D., & Ruiz, E. (2012). Estimating GARCH volatility in the presence of outliers. Economics Letters, 114(1), 86-90.

Conrad, C., Custovic, A., & Ghysels, E. (2018). Long-and short-term cryptocurrency volatility components: A GARCH-MIDAS analysis. Journal of Risk and Financial Management, 11(2), 23.

Conrad, C., & Kleen, O. (2020). Two are better than one: Volatility forecasting using multiplicative component GARCH‐MIDAS models. Journal of Applied Econometrics, 35(1), 19-45.

Conrad, C., & Loch, K. (2015). Anticipating long‐term stock market volatility. Journal of Applied Econometrics, 30(7), 1090-1114.

Corsi, F. (2009). A simple approximate long-memory model of realized volatility. Journal of Financial Econometrics, 7(2), 174-196.

Dickey, D. A., & Fuller, W. A. (1979). Distribution of the estimators for autoregressive time series with a unit root. Journal of the American statistical association, 74(366a), 427-431.

Ding, Z., & Granger, C. W. (1996). Modeling volatility persistence of speculative returns: a new approach. Journal of Econometrics, 73(1), 185-215.

Dixit, A. K., & Pindyck, R. S. (1994). Investment under uncertainty. Princeton university press.

Dutta, A., Bouri, E., & Saeed, T. (2021). News-based equity market uncertainty and crude oil volatility. Energy, 222, 119930.

Doğan, B., Trabelsi, N., Tiwari, A. K., & Ghosh, S. (2023). Dynamic dependence and causality between crude oil, green bonds, commodities, geopolitical risks, and policy uncertainty. The Quarterly Review of Economics and Finance, 89, 36-62.

Edwards III, G. C., Mitchell, W., & Welch, R. (1995). Explaining presidential approval: The significance of issue salience. American Journal of Political Science, 108-134. E

Engle, R. F., Ghysels, E., & Sohn, B. (2013). Stock market volatility and macroeconomic fundamentals. Review of Economics and Statistics, 95(3), 776-797.

Engle R. F, and Lee, G, (1999). A permanent and transitory component model of stock return volatility R. Engle, H. White (Eds.), Cointegration, Causality, and Forecasting: A Festschrift in Honor of Clive W.J. Granger, Oxford University Press, New York (1999), pp. 475-497

Eve, R. A., Eve, R. A., Horsfall, S., & Lee, M. E. (Eds.). (1997). Chaos, complexity, and sociology: Myths, models, and theories. Sage.

Fang, L., Qian, Y., Chen, Y., & Yu, H. (2018). How does stock market volatility react to NVIX? Evidence from developed countries. Physica A: Statistical Mechanics and its Applications, 505, 490-499.

Fernández-Villaverde, J., Guerrón-Quintana, P., Rubio-Ramirez, J. F., & Uribe, M. (2011). Risk matters: The real effects of volatility shocks. American Economic Review, 101(6), 2530-2561.

Flacco, P. R., & Kroetch, B. G. (1986). Adjustment to Production Uncertainty and the Theory of the Firm. Economic Inquiry, 24(3), 485-495.

Fernández-Villaverde, J., Guerrón-Quintana, P., Rubio-Ramirez, J. F., & Uribe, M. (2011). Risk matters: The real effects of volatility shocks. American Economic Review, 101(6), 2530-2561.

Galbraith, J. K. (1977). The age of uncertainty.  Houghton Mifflin Harcourt, New York.

Galvao, A. F., Gu, J., & Volgushev, S. (2020). On the unbiased asymptotic normality of quantile regression with fixed effects. Journal of Econometrics, 218(1), 178-215.

Geraci, M. (2019). Modelling and estimation of nonlinear quantile regression with clustered data. Computational statistics & data analysis, 136, 30-46.

Ghysels, E., Santa-Clara, P., & Valkanov, R. (2004). The MIDAS touch: Mixed data sampling regression models.

Ghysels E., Virmantas Kvedaras, V., Vaidotas Zemlys, V. (2016). Mixed Frequency Data Sampling Regression Models: The R Package Midasr. Journal of Statistical Software, 72(4).

Granger, C. W. (1969). Investigating causal relations by econometric models and cross-spectral methods. Econometrica: Journal of the Econometric Society, 424-438.

Hajizadeh, E., Seifi, A., Zarandi, M. F., & Turksen, I. B. (2012). A hybrid modeling approach for forecasting the volatility of S&P 500 index return. Expert Systems with Applications, 39(1), 431-436.

Hall, P., & Sheather, S. J. (1988). On the distribution of a studentized quantile. Journal of the Royal Statistical Society: Series B (Methodological), 50(3), 381-391.

Hansen, P. R., Huang, Z., & Shek, H. H. (2012). Realized GARCH: a joint model for returns and realized measures of volatility. Journal of Applied Econometrics, 27(6), 877-906.

Hendricks, W., & Koenker, R. (1992). Hierarchical spline models for conditional quantiles and the demand for electricity. Journal of the American statistical Association, 87(417), 58-68.

Jadidzadeh, A., & Serletis, A. (2017). How does the US natural gas market react to demand and supply shocks in the crude oil market?. Energy Economics, 63, 66-74.

Jadidzadeh, A., & Serletis, A. (2022). Oil prices and the natural gas liquids markets. Green Financ, 4, 207-230.

Javaheri , A., Wilmott, P., & Haug, E. G. (2004). GARCH and volatility swaps. Quantitative Finance, 4(5), 589-595.

Jenkins, J. D., Luke, M., & Thernstrom, S. (2018). Getting to zero carbon emissions in the electric power sector. Joule, 2(12), 2498-2510.

Jiang, Y., Zhu, Z., Tian, G., & Nie, H. (2019). Determinants of within and cross-country economic policy uncertainty spillovers: Evidence from US and China. Finance Research Letters, 31(2019), 195–206.

Jurado, K., Ludvigson, S. C., & Ng, S. (2015). Measuring uncertainty. American Economic Review, 105(3), 1177-1216.

Kang, S., Hernandez, J. A., Sadorsky, P., & McIver, R. (2021). Frequency spillovers, connectedness, and the hedging effectiveness of oil and gold for US sector ETFs. Energy Economics, 99, 105278.

Kilian, L., & Park, C. (2009). The impact of oil price shocks on the US stock market. International economic review, 50(4), 1267-1287.

Krol, R. (2014). Economic policy uncertainty and exchange rate volatility. International Finance, 17(2), 241-256.

Koenker, R. W., & d'Orey, V. (1987). Algorithm AS 229: Computing regression quantiles. Applied statistics, 383-393.

Koenker, R., & Machado, J. A. (1999). Goodness of fit and related inference processes for quantile regression. Journal of the American Statistical Association, 94 (448), 1296-1310.

Koenker, R., & Ng, P. (2005). A Frisch-Newton algorithm for sparse quantile regression. Acta Mathematicae Applicatae Sinica, 21(2), 225-236.

Krupnick, A., Wang, Z., & Wang, Y. (2013). Sector effects of the shale gas revolution in the United States. Resources for the Future DP, 13-21.

Kyriazis, N. A., Papadamou, S., & Koulis, A. (2025). The nexus of monetary, regulatory and national security policy uncertainties with S&P500: lessons of stock market crashes. Journal of Financial Economic Policy.

Lindblad, A. (2017). Sentiment indicators and macroeconomic data as drivers for low-frequency stock market volatility.

Lindblad, A. (2019). Evaluating macro-finance interactions using mixed frequency methods. Publications of the Helsinki Center of Economic Research.

Liu, H. C., & Hung, J. C. (2010). Forecasting S&P-100 stock index volatility: The role of volatility asymmetry and distributional assumption in GARCH models. Expert Systems with Applications, 37(7), 4928-4934.

Liu, M. L., Ji, Q., & Fan, Y. (2013). How does oil market uncertainty interact with other markets? An empirical analysis of implied volatility index. Energy, 55, 860-868.

Liu, X., Wang, Y., Du, W., & Ma, Y. (2022). Economic policy uncertainty, oil price volatility and stock market returns: Evidence from a nonlinear model. The North American Journal of Economics and Finance, 62, 101777

Manela, A., & Moreira, A. (2017). News implied volatility and disaster concerns. Journal of Financial Economics, 123(1), 137-162.

Pan, Z., Wang, Y., Wu, C., & Yin, L. (2017). Oil price volatility and macroeconomic fundamentals: A regime switching GARCH-MIDAS model. Journal of Empirical Finance, 43, 130-142.

Pan, Z., Y. Wang, and L. Liu (2021). Macroeconomic uncertainty and expected shortfall (and value at risk): a new dynamic semiparametric model. Quantitative Finance, 1–15.

Perron, P., & Phillips, P. C. (1987). Does GNP have a unit root? A re-evaluation. Economics Letters, 23(2), 139-145.

Peters, E. E. (1994). Fractal market analysis: applying chaos theory to investment and economics (Vol. 24). John Wiley & Sons.

Pigelmyer, D. (2014, October 30). Tom Wolf ’s $1 billion myth. Press release. Retrieved from http://triblive. com/opinion/featuredcommentary/7054262-74/tax-energy-pennsylvania#axzz3Zg12ba00

Pindyck, R. S. (1990). Irreversibility, uncertainty, and investment.  NBER, Working paper 3307.

Pindyck, R. S. (2004). Volatility in natural gas and oil markets. J. Energy & Dev., 30, 1.

Powell, J. L. (1986). Censored regression quantiles. Journal of Econometrics, 32(1), 143-155.

Qadan, M., & Idilbi-Bayaa, Y. (2020). Risk appetite and oil prices. Energy Economics, 85, 104595.

Robe, M. A., & Wallen, J. (2016). Fundamentals, derivatives market information and oil price volatility. Journal of Futures Markets, 36(4), 317-344.

Sandmo, A. (1971). On the theory of the competitive firm under price uncertainty. The American Economic Review, 61(1), 65-73.

Scarcioffolo, A. R., & Etienne, X. L. (2021a). Regime-switching energy price volatility: The role of economic policy uncertainty. International Review of Economics & Finance, 76, 336-356.

Scarcioffolo, A. R., & Etienne, X. (2021b). Testing directional predictability between energy prices: A quantile-based analysis. Resources Policy, 74, 102258.

Sharif, A., Aloui, C., & Yarovaya, L. (2020). COVID-19 pandemic, oil prices, stock market, geopolitical risk and policy uncertainty nexus in the US economy: Fresh evidence from the wavelet-based approach. International Review of Financial Analysis, 70, 101496.

Shephard, N., & Sheppard, K. (2010). Realising the future: forecasting with high‐frequency‐based volatility (HEAVY) models. Journal of Applied Econometrics, 25(2), 197-231.

Spigelmyer, D.  Pennsylvania, U.S. benefit from gas drilling industry.  July 18, 2014.  https://www.mcall.com/2014/07/18/dave-spigelmyer-pennsylvania-us-benefit-from-gas-drilling-industry/

Su, Z., Fang, T., & Yin, L. (2017). The role of news-based implied volatility among US financial markets. Economics Letters, 157, 24-27.

Su, Z., Lu, M., & Yin, L. (2018). Oil prices and news-based uncertainty: novel evidence. Energy Economics, 72, 331-340.

Su, Z., Fang, T., and Yin, L., 2019. Understanding Stock Market Volatility: What is the Role of U.S. Uncertainty? North American Journal of Economics and Finance 48, 582-590.

Sun, Z., & Li, J. (2025). The impact of economic policy uncertainty on household portfolios effectiveness: Evidence from China. Finance Research Letters, 107215.

Wen, F., Xiao, Y., & Wu, H. (2019). The effects of foreign uncertainty shocks on China’s macro-economy: Empirical evidence from a nonlinear ARDL model. Physica A: Statistical Mechanics and its Applications, 532, 121879.

Whaley, R. E. (1993). Derivatives on market volatility: Hedging tools long overdue. The journal of Derivatives, 1(1), 71-84.

Whaley, R. E. (2009). Understanding the VIX. The Journal of Portfolio Management, 35(3), 98-105.

Xu, Y., X. Wang, and H. Liu (2021). Quantile-based GARCH-MIDAS: Estimating value-at-riskusing mixed-frequency information. Finance Research Letters.

Yu, K., Lu, Z., & Stander, J. (2003). Quantile regression: applications and current research areas. Journal of the Royal Statistical Society Series D: The SFtatistician, 52(3), 331-350.