ISSN: 2056-3736 (Online Version) | 2056-3728 (Print Version)

Notes on Fano Ratio and Portfolio Optimization

Zura Kakushadze and Willie Yu

Correspondence: Zura Kakushadze , zura@quantigic.com

Quantigic Solutions LLC, USA

pdf (321.25 Kb) | doi:

Abstract

We discuss - in what is intended to be a pedagogical fashion - generalized "mean-to-risk" ratios for portfolio optimization. The Sharpe ratio is only one example of such generalized "mean-to-risk" ratios. Another example is what we term the Fano ratio (which, unlike the Sharpe ratio, is independent of the time horizon). Thus, for long-only portfolios optimizing the Fano ratio generally results in a more diversified and less skewed portfolio (compared with optimizing the Sharpe ratio). We give an explicit algorithm for such optimization. We also discuss (Fano-ratio-inspired) long-short strategies that outperform those based on optimizing the Sharpe ratio in our backtests.

Keywords:

  Portfolio, Stocks, Equities, Optimization, Sharpe Ratio, Fano Ratio, Risk, Return, Expected Return, Alpha, Specific Risk, Idiosyncratic Risk, Factor Loadings, Factor Covariance Matrix, Risk Factor, Volatility, Variance, Covariance, Correlation, Bounds, Trading Costs, Constraints, Regression, Weights.


References

Adcock, J.C. and Meade, N. (1994) A simple algorithm to incorporate transactions costs in quadratic optimization. European Journal of Operational Research 79(1): 85-94.

Almgren, R., Thum, C., Hauptmann, E. and Li, H. (2005) Equity market impact. Risk Magazine 18(7): 57-62.

Bai, Z.D., Hui, Y.C. andWong, W.K. (2015) Internet Bubble Examination with Mean-Variance Ratio. In: Lee, C.F. and Lee, J.C. (eds.) Handbook of Financial Econometrics and Statistics. New York, NY: Springer, pp. 1451-1465.Bai, Z.D., Wang, K.Y. and Wong, W.K. (2011) The mean-variance ratio test - A complement to the coecient of variation test and the Sharpe ratio test. Statistics & Probability Letters 81(8): 1078-1085.Best, M.J. and Hlouskova, J. (2003) Portfolio selection and transactions costs. Computational Optimization and Applications 24(1): 95-116.Bouchaud, J.-P. and Potters, M. (2011) Financial applications of random matrix theory: a short review. In: Akemann, G., Baik, J. and Di Francesco, P. (eds.) The Oxford Handbook of Random Matrix Theory. Oxford, United Kingdom: Oxford University Press.Bowler, B. and Wentz, P. (2005) Portfolio Optimization: MAD vs. Markowitz. Undergraduate Math Journal (Rose-Hulman Instritute of Technology) 6(2): 3.Braga M.D. (2016) Alternative Approaches to Traditional Mean-Variance Optimisation. In: Basile, I. and Ferrari, P. (eds) Asset Management and Institutional Investors. Cham, Switzerland: Springer, pp. 203-213.Cadenillas, A. and Pliska, S.R. (1999) Optimal trading of a security when there are taxes and transaction costs. Finance and Stochastics 3(2): 137-165.Delbos, F. and Gilbert, J.C. (2005) Global linear convergence of an augmented Lagrangian algorithm for solving convex quadratic optimization problems. Journal of Convex Analysis 12(1): 45-69.den Hertog, D. (1992) Interior Point Approach to Linear, Quadratic and Convex Programming. Mathematics and its Applications 277. Dordrecht, The Netherlands: Kluwer Academic Publishers.Fano, U. (1947) Ionization Yield of Radiations. II. The Fluctuations of the Number of Ions. Physical Review 72(1): 26.Grinold, R.C. and Kahn, R.N. (2000) Active Portfolio Management. New York, NY: McGraw-Hill.Janeecek, K. and Shreve, S. (2004) Asymptotic analysis for optimal investment and consumption with transaction costs. Finance and Stochastics 8(2): 181-206.Jansen, B. (1997) Interior Point Techniques in Optimization - Complementarity, Sensitivity and Algorithms. Applied Optimization 6. Dordrecht, The Netherlands: Kluwer Academic Publishers.

Kakushadze, Z. (2015a) Mean-Reversion and Optimization. Journal of Asset Management 16(1): 14-40.Available online: http://ssrn.com/abstract=2478345.Kakushadze, Z. (2015b) Heterotic Risk Models. Wilmott Magazine 2015(80): 40-55. Available online: http://ssrn.com/abstract=2600798.Kakushadze, Z. (2016) 101 Formulaic Alphas. Wilmott Magazine 2016(84): 72-80. Available online: http://ssrn.com/abstract=2701346.Kakushadze, Z. (2017) On Origins of Bubbles. Journal of Risk & Control 4(1):1-30. Available online: http://ssrn.com/abstract=2830773.Kakushadze, Z. and Yu, W. (2016a) Multifactor Risk Models and Heterotic CAPM. The Journal of Investment Strategies 5(4): 1-49.Available online: http://ssrn.com/abstract=2722093.Kakushadze, Z. and Yu, W. (2016b) Statistical Industry Classi cation. Journal of Risk & Control 3(1) (2016) 17-65.Available online: http://ssrn.com/abstract=2802753.Kakushadze, Z. and Yu, W. (2017a) How to Combine a Billion Alphas. Journal of Asset Management 18(1): 64-80.Available online: http://ssrn.com/abstract=2739219.Kakushadze, Z. and Yu, W. (2017b) Statistical Risk Models. The Journal of Investment Strategies 6(2): 1-40.Available online: http://ssrn.com/abstract=2732453.Kellerer, H., Mansini, R. and Speranza, M.G. (2000) Selecting Portfolios with Fixed Costs and Minimum Transaction Lots. Annals of Operations Research,99(1-4): 287-304.Konno, H. and Yamazaki, H. (1991) Mean-Absolute Deviation Portfolio Optimization Model and Its Applications to Tokyo Stock Market. Management Science 37(5): 519-531.Lo, A.W. and Patel, P.N. (2008) 130/30: The New Long-Only. The Journal of Portfolio Management 34(2): 12-38.Lobo, M.S., Fazel, M. and Boyd, S. (2007) Portfolio optimization with linear and xed transaction costs. Annals of Opererations Research 152(1): 341-365.Markowitz, H. (1952) Portfolio selection. The Journal of Finance 7(1): 77-91.Michaud, R. and Michaud, R. (2008) Effcient Asset Management: A practical Guide to Stock Portfolio Optimization and Asset Allocation. (2nd ed.) Oxford, UK: Oxford University Press.

Mokkhavesa, S. and Atkinson, C. (2002) Perturbation solution of optimal portfolio theory with transaction costs for any utility function. IMA Journal of Management Mathematics 13(2): 131-151.Murty, K.G. (1988) Linear Complementarity, Linear and Non-linear Programming. Sigma Series in Applied Mathematics 3. Berlin: Heldermann Verlag.Pang, J.-S. (1983) Methods for quadratic programming: A survey. Computers & Chemical Engineering 7(5): 583-594.Patel, N.R. and Subrahmanyam, M.G. (1982). A Simple Algorithm for Optimal Portfolio Selection with Fixed Transaction Costs. Management Science 28(3): 303-314.Rockafellar, R.T. and Uryasev, S. (2000) Optimization of Conditional Value-At-Risk. The Journal of Risk 2(3): 21-41.Roy, O. and Vetterli, M. (2007) The effective rank: A measure of effective dimensionality. In: Proceedings - EUSIPCO 2007, 15th European Signal Processing Conference. Poznan, Poland (September 3-7), pp. 606-610.Sharpe, W.F. (1966) Mutual Fund Performance. Journal of Business 39(1): 119-138.Sharpe, W.F. (1994) The Sharpe Ratio. The Journal of Portfolio Management 21(1): 49-58.Shreve, S. and Soner, H.M. (1994) Optimal investment and consumption with transaction costs. The Annals of Applied Probability 4(3): 609-692.